973 resultados para 4-TRIMETHYLPENTYL PHOSPHINIC ACID
Resumo:
Equilibrium distributions of cobalt(II), nickel(II), zinc(II), cadmium(II), and copper(II) have been studied in the adsorption with extraction resin containing 1-hexyl-4-ethyloctyl isopropylphosphonic acid (HEOPPA) as an extractant from chloride medium. The distribution coefficients are determined as a function of pH. The data are analyzed both graphically and numerically. The extraction of the metal ions can be explained assuming the formation of metal complexes in the resin phase with a general composition ML2(HL)(q). The adsorbed species of the metal ions are proposed to be ML2 and the equilibrium constants are calculated. The efficiency of the resin in the separation of the metal ions is provided according to the separation factors values. The separation of Zn from Ni, Cd, Cu, Co, and Co from Ni, Cd, Cu with the resin is determined to be available. Furthermore, Freundlich's isothermal adsorption equations and thermodynamic quantities, i.e., DeltaG, DeltaH, and DeltaS are determined.
Resumo:
This paper presents the results of the adsorption of heavy rare earth ions (Gd(III), Tb(III), Dy(III), Ho(III), Er(III), Tm(III), Yb(III), Lu(III) and Y(III)) from hydrochloric acid solutions at 30 degreesC by the extraction resin containing 1-hexyl-4-ethyloctyl isopropylphosphonic acid (HEOPPA), which has higher steric hindrance, higher selectivities and lower extraction and stripping acidity than di(2-ethylhexyl)phosphoric acid (DERPA) or 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (HEH/EHP). The dependence of acid concentration, flow rate and amounts of rare earth ions sorbed on the separation of Er-Tm, Tm-Yb and Er-Tm-Yb mixtures has been studied. The baseline chromatographic separation of Er-Tm-Yb mixture has been observed. Satisfactory results with purity and yield of Tm2O3>99.71% and >71.25%, Er2O3>99-81% and >94.17%, and Yb2O3>99.74% and >89.83%, respectively, have been obtained. The parameters such,as resolution, separation factors and efficiencies have been determined as a function of acidity, loading of rare earth elements and flow rates. The stoichiometry of the extraction of rare earth ions has been suggested as well.
Resumo:
A new extractant 1-hexyl-4-ethyloctyl isopropylphosphonic acid (HHEOIPP or HA) in heptane was employed to extract rare earths from hydrochloric acid medium. The dependence of extraction distribution ratio on equilibrium aqueous pH and the concentration of extractant were investigated. On the basis of slope analysis,it was proposed that two different kinds of extracted species were formed. For rare earth elements (La similar to Ho) the extracted species was LnA(3)(HA)(3) and for heavy rare earth elements (Er similar to Lu) the species was LnClA(2)(HA)(3). The steric hindrance plays an important role in forming the species. The extraction constants and separation factors of the adjacent rare earths were calculated too. Compared with HDEHP and HEH/EHP, HHEOIPP is a valuable extractant with high separation selectivity. The "tetrad effect" between K-ex and atomic number was observed.
Resumo:
The solvent extraction of Sc(III), Zr(IV), Th(IV), Fe(III) and Lu(III) with Cyanex 302 (bis(2,4,4-trimethylpentyl)monothiophosphinic acid) and Cyanex 301 ( bis(2,4,4-trimethylpentyl) dithiophosphinic acid) in n-hexane from acidic aqueous solutions has been investigated systematically. The effect of equilibrium aqueous acidity on the extraction with these reagents was studied. The separation of Th(IV), Fe(III) and Lu(III) from Sc(III), or the separation of other metals from Lu(III) with Cyanex 302, can be achieved by controlling the aqueous acidity. However, Cyanex 301 exhibited a poor selectivity for the above metals, except for Lu(III). The extraction of these metals with Cyanex 272, Cyanex 302 and Cyanex 301 has been compared. The stripping percentages of Sc(III) for Cyanex 302 and Cyanex 301 in a single stage are near 78% and 75% with 3.5 mol/L and 5.8 mol/L sulphuric acid solutions, respectively. The effects of extractant concentration and temperature on the extraction of Sc(III) were investigated. The stoichiometry of the extraction of Sc(III) with Cyanex 302 was determined. The role of different components of Cyanex 302 in the extraction of Sc(III) was discussed.
Resumo:
Sixteen multiparous Holstein cows were used to determine the effects of 2-hydroxy-4-(methylthio) butanoic acid isopropyl ester (HMBi: 0 vs. 1.26 g/kg of total ration dry matter (DM) and dietary crude protein (CP) concentration [14.7% (low) vs. 16.9% (standard), DM basis] on milk yield and composition using a replicated 4 x 4 Latin square design experiment with 4-wk periods. Cows were fed ad libitum a total mixed ration with a 1: 1 forage-to-concentrate ratio (DM basis), and diets provided an estimated 6.71 and 1.86% lysine and methionine, respectively, in metabolizable protein for the low-protein diet and 6.74 and 1.82% in the standard protein diet. Dry matter intake, milk yield, and composition were measured during wk 4 of each period. There were no effects on DM intake, which averaged 24.7 kg/d. There was an interaction between dietary CP and HMBi for milk yield and 3.5% fat-corrected milk (FCM). Feeding HMBi decreased milk and FCM yield when fed with the low-CP diet but did not affect milk or FCM yield when fed with the standard CP diet. Feeding HMBi increased milk protein concentration regardless of diet CP concentration and increased milk protein yield when added to the standard CP diet but not the low-CP diet. The positive effect of HMBi on milk protein yield was only observed at the standard level of dietary CP, suggesting other factors limited the response to HMBi when dietary protein supply was restricted.
Resumo:
Transient global ischemia induces selective delayed cell death, primarily of principal neurons in the hippocampal CA1. However, the molecular mechanisms underlying ischemia-induced cell death are as yet unclear. The present study shows that global ischemia triggers a pronounced and cell-specific reduction in GluR2 [the subunit that limits Ca2+ permeability of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors] in vulnerable CA1 neurons, as evidenced by immunofluorescence of brain sections and Western blot analysis of microdissected hippocampal subfields. At 72 h after ischemia (a time before cell death), virtually all CA1 pyramidal neurons exhibited greatly reduced GluR2 immunolabeling throughout their somata and dendritic processes. GluR2 immunolabeling was unchanged in pyramidal cells of the CA3 and granule cells of the dentate gyrus, regions resistant to ischemia-induced damage. Immunolabeling of the AMPA receptor subunit GluR1 was unchanged in CA1, CA3, and dentate gyrus. Western analysis indicated that GluR2 subunit abundance was markedly reduced in CA1 at 60 and 72 h after the ischemic insult; GluR1 abundance was unchanged in all subfields at all times examined. These findings, together with the previous observation of enhanced AMPA-elicited Ca2+ influx in postischemic CA1 neurons, show that functional GluR2-lacking, Ca2+-permeable AMPA receptors are expressed in vulnerable neurons before cell death. Thus, the present study provides an important link in the postulated causal chain between global ischemia and delayed death of CA1 pyramidal neurons.
Resumo:
The mass transfer behaviors of Cd(II), Fe(III), Zn(II), and Eu(III) in sulfuric acid solution using microporous hollow fiber membrane (HFM) containing bis(2,4,4-trimethylpentyl)monothiophosphinic acid (commercial name Cyanex302) were investigated in this paper. The experimental results showed that the values of the mass transfer coefficients (K-w) decreased with an increase of H+ concentration and increased with an increase of extractant Cyanex302 concentration. The mass transfer resistance of Eu3+ was the largest because K-w value of Eu3+ was the smallest. The order of mass transfer rate of metal ions at low pH was Cd > Zn > Fe > Eu. Mixtures of Zn2+ and Eu3+ or of Zn2+ and Cd2+ were well separated in a counter-current circulation experiment using two modules connected in series at different initial acidity and concentration ratio. These results indicate that a hollow fiber membrane extractor is capable of separating the mixture compounds by controlling the acidity of the aqueous solution and by exploiting different mass transfer kinetics. The interfacial activity of Cyanex302 in sulfuric acid solution was measured and interfacial parameters were obtained according to Gibbs adsorption equation.
Resumo:
Extraction and separation of Eu3+ and Zn2+ in sulfuric acid solution was investigated by hollow fiber membrane with cyanex 302 (bis (2,4,4-trimethylpentyl) monothiophosphinic acid) in counter-currently circulating operation. Reaction mechanism of membrane extraction and effect of extractant concentration and H+ concentration in aqueous phase on the mass transfer coefficient were discussed. It can be concluded that Zn2+ can be extracted completely from Eu3+ sulfate solution according to the kinetics competing difference. In one extractor process, extraction percentage of Zn2+ was not completely and Eu3+ was not extracted. Extraction percentage of Zn2+ reached 94.92%, but Eu3+ only reached 8.59% after 100 minutes extraction in two series connectors and that of Zn2+ and Eu3+ reached 99.9% and 6.53% respectively after 40 minutes extraction in three series connectors.
Resumo:
The synergistic extraction of Sc(III) from H2SO4 solution with bis(2, 4, 4-trimethylpentyl)monothiophosphinic acid(HBTMPTP, HL) and branched chain alkyl phosphine oxide mixture (Cyanex 925, B) in n-hexane has been investigated, The results indicated that synergistic effect was showed in low acidity (c(H2SO4) < 0.25 mol/L). The composition of the extracted complex of Sc(III) has been determined to be Sc(HL2)(2)B-3(SO4)(1/2) by the method of slope analysis, The mechanism of the synergistic extraction of Sc(III) may be : Sc3+ + 2(HL)(2(O)) + 3B((O)) + 1/2SO(4)(2-)reversible arrow(K12)Sc(HL2)(2)B-3(SO4)(1/2(O)) + 2H(+) ScL(HL2)(2(O)) + 3B((O)) + H+ + 1/2SO(4)(2-)reversible arrow(beta')Sc(HL2)(2)B-3(SO4)(1/2(O)) + 1/2(HL)(2(O)) Sc(SO4)(1.5)B-2(O) + B-(O) + 2(HL)(2(O))reversible arrow(beta')Sc(HL2)(2)B-3(SO4)(1/2(O)) + 2H(+) + SO42- Their equilibrium constants have been calculated to be lgK(13)=6.77+/-0.12, lg beta'=7.71, lg beta '' = 0.10, respectively, The IR spectra and FAB-MS of the saturated synergistic extraction complex of Sc(III) have been discussed as well.
Resumo:
The structures of the 1:1 proton-transfer compounds of isonipecotamide (4-piperidinecarboxamide) with 4-nitrophthalic acid, 4-carbamoylpiperidinium 2-carboxy-4-nitrobenzoate, C6H13N2O8+ C8H4O6- (I), 4,5-dichlorophthalic acid, 4-carbamoylpiperidinium 2-carboxy-4,5-dichlorobenzoate, C6H13N2O8+ C8H3Cl2O4- (II) and 5-nitroisophthalic acid, 4-carbamoylpiperidinium 3-carboxy-5-nitrobenzoate, C6H13N2O8+ C8H4O6- (III) as well as the 2:1 compound with terephthalic acid, bis(4-carbamoylpiperidinium)benzene-1,2-dicarboxylate dihydrate, 2(C6H13N2O8+) C8H4O42- . 2H2O (IV)have been determined at 200 K. All salts form hydrogen-bonded structures, one-dimensional in (II) and three-dimensional in (I), (III) and (IV). In (I) and (III) the centrosymmetric R2/2(8) cyclic amide-amide association is found while in (IV) several different types of water-bridged cyclic associations are present [graph sets R2/4(8), R3/4(10), R4/4(12), R3/3(18) and R4/6(22)]. The one-dimensional structure of (I), features the common 'planar' hydrogen 4,5-dichlorophthalate anion together with enlarged cyclic R3/3(13) and R3/4(17) associations. With the structures of (I) and (III) the presence of head-to-tail hydrogen phthalate chain substructures is found. In (IV) head-to-tail primary cation-anion associations are extended longitudinally into chains through the water-bridged cation associations and laterally by piperidinium N-H...O(carboxyl) and water O-H...O(carboxyl) hydrogen bonds. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen-bonded structures. An additional example of cation--anion association with this cation is also shown in the asymmetric three-centre piperidinium N-H...O,O'(carboxyl) interaction in the first-reported structure of a 2:1 isonipecotamide-carboxylate salt.
Resumo:
The extractions of the selected rare earths (Sc, Y, La and Gd) from hydrochloric acid solutions have been investigated using bis(2,4,4-trimethylpentyl)-mono thiophosphinic acid (Cyanex 302, HL) in heptane as an extractant. The results demonstrate that the extractions of rare earths occur via the following reaction: Sc(OH)(2+) + 2[(HL)(2)]((O)) double left right arrow [Sc(OH)L-2 (.) 2(HL)]((O)) + 2H(+) Y3+ + 3[(HL)(2)]((O)) double left right arrow [Y(HL2)(3)]((O)) + 3H(+) La(OH)(2)(+) + 3[(HL)(2)](O) double left right arrow [La(OH)(2)L (.) 5(HL)]((O)) + H+ Gd(OH)(2+) + 3[(HL)(2)]((O)) double left right arrow [Gd(OH)L-2 (.) 4(HL)]((O)) + 2H(+) The pH(1/2) values and equilibrium constants of the extracted complexes have been deduced by taking into account the aqueous phase complexation of the metal ion with hydroxyl ligands and plausible complexes extracted into the organic phase. According to the pH(1/2) values, it is possible to realize mutual separation among Sc(III), Y(III), La(III) and Gd(III) with Cyanex 302 by controlling aqueous acidity.
Resumo:
The bastnasite of Baotou (China) was roasted in concentrated sulfuric acid at 250-300 degreesC and the calcined products were leached by water. Almost all rare earths (RE) were moved into solutions in trivalent along with some radioactive impurity thorium(IV) (Th(IV))which accounts for 0.4% of RE and other impurities such as Fe(III), Ca, F, P, etc. Through fractional extraction (seven stages for extraction and nine for scrubbing), the mass ratio of Th(IV) and RE (ThO2/REO) in solution has decreased to 5 x 10(-6). The purity of ThO2 product recovered from organic phase is above 99%. The iron(III) in solutions can be removed in the form of precipitation by adding some magnesia into the solutions. Then RE can be concentrated by solvent extraction with 2-ethylhexyl phosphinic acid 2-ethylhexylester (P-507). The results of fractional extraction show that the concentration of total RE in aqueous solutions stripped by hydrochloric acid is over 200 g REO/I with the yield of RE above 99%. Individual RE can be attained by solvent extraction with P507 in the following process.