994 resultados para 240301 Atomic and Molecular Physics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a new atomic and molecular database we developed for use in the spectral synthesis code Cloudy. The design of Stout is driven by the data needs of Cloudy, which simulates molecular, atomic, and ionized gas with kinetic temperatures and densities spanning the low-to high-density limits. The radiation field between photon energies 10−8 Ry and 100 MeV is considered, along with all atoms and ions of the lightest 30 elements, and ~102 molecules. For ease of maintenance, the data are stored in a format as close as possible to the original data sources. Few data sources include the full range of data we need. We describe how we fill in the gaps in the data or extrapolate rates beyond their tabulated range. We tabulate data sources both for the atomic spectroscopic parameters and for collision data for the next release of Cloudy. This is not intended as a review of the current status of atomic data, but rather a description of the features of the database which we will build upon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud point extraction (CPE) was employed for separation and preconcentration prior to the determination of nickel by graphite furnace atomic absorption spectrometry (GFAAS), flame atomic absorption spectrometry (FAAS) or UV-Vis spectrophotometry. Di-2-pyridyl ketone salicyloylhydrazone (DPKSH) was used for the first time as a complexing agent in CPE. The nickel complex was extracted from the aqueous phase using the Triton X-114 surfactant. Under optimized conditions, limits of detection obtained with GFAAS, FAAS and UV-Vis spectrophotometry were 0.14, 0.76 and 1.5 mu g L-1, respectively. The extraction was quantitative and the enrichment factor was estimated to be 27. The method was applied to natural waters, hemodialysis concentrates, urine and honey samples. Accuracy was evaluated by analysis of the NIST 1643e Water standard reference material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliographies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a fully quantum mechanical treatment of the nondegenerate optical parametric oscillator both below and near threshold. This is a nonequilibrium quantum system with a critical point phase transition, that is also known to exhibit strong yet easily observed squeezing and quantum entanglement. Our treatment makes use of the positive P representation and goes beyond the usual linearized theory. We compare our analytical results with numerical simulations and find excellent agreement. We also carry out a detailed comparison of our results with those obtained from stochastic electrodynamics, a theory obtained by truncating the equation of motion for the Wigner function, with a view to locating regions of agreement and disagreement between the two. We calculate commonly used measures of quantum behavior including entanglement, squeezing, and Einstein-Podolsky-Rosen (EPR) correlations as well as higher order tripartite correlations, and show how these are modified as the critical point is approached. These results are compared with those obtained using two degenerate parametric oscillators, and we find that in the near-critical region the nondegenerate oscillator has stronger EPR correlations. In general, the critical fluctuations represent an ultimate limit to the possible entanglement that can be achieved in a nondegenerate parametric oscillator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monogamous nature of entanglement has been illustrated by the derivation of entanglement-sharing inequalities-bounds on the amount of entanglement that can be shared among the various parts of a multipartite system. Motivated by recent studies of decoherence, we demonstrate an interesting manifestation of this phenomena that arises in system-environment models where there exists interactions between the modes or subsystems of the environment. We investigate this phenomenon in the spin-bath environment, constructing an entanglement-sharing inequality bounding the entanglement between a central spin and the environment in terms of the pairwise entanglement between individual bath spins. The relation of this result to decoherence will be illustrated using simplified system-bath models of decoherence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How does the classical phase-space structure for a composite system relate to the entanglement characteristics of the corresponding quantum system? We demonstrate how the entanglement in nonlinear bipartite systems can be associated with a fixed-point bifurcation in the classical dynamics. Using the example of coupled giant spins we show that when a fixed point undergoes a supercritical pitchfork bifurcation, the corresponding quantum state-the ground state-achieves its maximum amount of entanglement near the critical point. We conjecture that this will be a generic feature of systems whose classical limit exhibits such a bifurcation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent experimental measurements of atomic intensity correlations through atom shot noise suggest that atomic quadrature phase correlations may soon be measured with a similar precision. We propose a test of local realism with mesoscopic numbers of massive particles based on such measurements. Using dissociation of a Bose-Einstein condensate of diatomic molecules into bosonic atoms, we demonstrate that strongly entangled atomic beams may be produced which possess Einstein-Podolsky-Rosen (EPR) correlations in field quadratures in direct analogy to the position and momentum correlations originally considered by EPR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When can a quantum system of finite dimension be used to simulate another quantum system of finite dimension? What restricts the capacity of one system to simulate another? In this paper we complete the program of studying what simulations can be done with entangling many-qudit Hamiltonians and local unitary control. By entangling we mean that every qudit is coupled to every other qudit, at least indirectly. We demonstrate that the only class of finite-dimensional entangling Hamiltonians that are not universal for simulation is the class of entangling Hamiltonians on qubits whose Pauli operator expansion contains only terms coupling an odd number of systems, as identified by Bremner [Phys. Rev. A 69, 012313 (2004)]. We show that in all other cases entangling many-qudit Hamiltonians are universal for simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present Ehrenfest relations for the high temperature stochastic Gross-Pitaevskii equation description of a trapped Bose gas, including the effect of growth noise and the energy cutoff. A condition for neglecting the cutoff terms in the Ehrenfest relations is found which is more stringent than the usual validity condition of the truncated Wigner or classical field method-that all modes are highly occupied. The condition requires a small overlap of the nonlinear interaction term with the lowest energy single particle state of the noncondensate band, and gives a means to constrain dynamical artefacts arising from the energy cutoff in numerical simulations. We apply the formalism to two simple test problems: (i) simulation of the Kohn mode oscillation for a trapped Bose gas at zero temperature, and (ii) computing the equilibrium properties of a finite temperature Bose gas within the classical field method. The examples indicate ways to control the effects of the cutoff, and that there is an optimal choice of plane wave basis for a given cutoff energy. This basis gives the best reproduction of the single particle spectrum, the condensate fraction and the position and momentum densities.