990 resultados para 1439
Effect of therapeutic dose X rays on mechanical and chemical properties of esthetic dental materials
Resumo:
The aim of this study was to investigate the influence of therapeutic dose X rays on the microhardness (MH) and degree of conversion (DC) of two different esthetic restorative dental materials. The materials were photo-activated with a LED light-curing unit using three cure-times: 5, 20 and 40 seconds. The photo-activation was carried out in two distinct periods: before and after irradiation with doses of 5, 35 and 70 Gy, from a 6 MV X rays beam. In accordance with the methodology used, it was conclude that a therapeutic dose does not have a detrimental effect on the photoinitiator molecules, because the photo-activation occurred after they were irradiated. When the irradiation was applied before photo-activation, the materials showed MH improvement, but when photo-activation was performed after irradiation, there was less improvement. However, there was no correlation between MH and DC. Thus, a therapeutic dose applied to cured material can promote linking and breaking of chain bonds in a non-linear way.
Resumo:
The effects of thermal treatment on the wettability and shrink resistance of Araucaria angustifolia (Parana pine) were studied from 20 to 200 °C. The contact angles of water droplets on untreated and heat-treated samples were measured by the sessile drop method in the grain of heartwood and sapwood cut in the radial, longitudinal, and tangential directions. A significant increase of the contact angles was verified for the samples from room temperature to 120 °C, in particular in the radial and tangential directions; at higher temperatures, the contact angles assumed almost constant values. From 120 to 200 °C, the sapwood of Araucaria angustifolia showed better dimensional stability and lower thermal resistance when compared to the heartwood. Variations of color were also studied by using the CIELab system, which showed to be capable of accurately distinguishing samples treated at different temperatures.
Resumo:
In this work, we propose natural rubber latex (NRL) membranes as a protein delivery system. For this purpose Bovine Serum Albumin (BSA) was incorporated into the latex solution for in vitro protein delivery experiments. Different polymerization temperatures were used, from -10 to 27 °C, in order to control the membrane morphology. These membranes were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), as well as the Lowry Method to measure the BSA release. SEM and AFM microscopy analysis showed that the number, size and distribution of pores in NRL membranes can be varied, as well as its overall morphology. We have found that the morphology of the membrane is the predominant factor for higher protein release, compared with pore size and number of pores. Results demonstrated that the best drug-delivery system was the membrane polymerized at RT (27 °C), which does release 66% of its BSA content for up to 18 days. Our results indicate that NRLb could be used in the future as an active membrane that could accelerate bone healing in GBR.
Resumo:
The thermal conductivity and mechanical strength of gypsum and gypsum-cellulose plates made from commercial plaster by a new process have been measured. The gypsum parts made by the new process, 'novogesso', have high mechanical strength and low porosity. The gypsum strength derives from both the high aspect ratio of the gypsum crystals and the strong adhesion among them by nano-flat layers of confined water, which behaves as supercooled water. Another contribution to the strength comes from the nano-flatness of the lateral surfaces of the gypsum single crystals. The bending and compression strengths, σB and σc, of gypsum plates prepared by this new technique can be as high as 30 and 100 MPa, respectively. The way gypsum plates have been assembled as well as their low thermal conductivity allowed for the construction of a low-cost experimental house with thermal and acoustic comfort.
Resumo:
Thiol-functionalised silica films were deposited on various electrode surfaces (gold, platinum, glassy carbon) by spin-coating sol-gel mixtures in the presence of a surfactant template. Film formation occurred by evaporation induced self-assembly (EISA) involving the hydrolysis and (co)condensation of silane and organosilane precursors on the electrode surface. The characterization of such material was performed by IR spectroscopy, thermogravimetry (TG), elemental analysis (EA), atomic force microscopy (AFM), scanning electron microscopy (SEM) and cyclic voltammetry (CV).
Resumo:
Major problems with valve bioprostheses are associated with progressive structural deterioration and calcification, directly associated with the use of glutaraldehyde (GA). This work describes the effects of GA processing and borate/glutamic acid buffer treatment on the mechanical, thermal and morphological properties of 0.5% GA crosslinked bovine pericardium (BP). The results showed that while the treatment of 0.5% GA crosslinked BP with borate/glutamic acid significantly improves the mechanical properties, it had no visible effect on surface morphology. Better surface preservation was only achieved for BP pre-treated with a lower GA concentration followed by the conventional treatment (0.5% GA). Improvements in mechanical properties probably arises from structural changes probably involving the depolymerization of polymeric GA crosslinks and an increase electrostatic interaction due to covalent binding of glutamic acid to free carbonyl groups (Schiff base).The results indicate that the treatment GA crosslinked BP with borate/glutamic acid buffer may be an attractive procedure for the manufacture of heart valve bioprostheses.
Resumo:
According to some estimates, world's population growth is expected about 50% over the next 50 years. Thus, one of the greatest challenges faced by Engineering is to find effective options to food storage and conservation. Some researchers have investigated how to design durable buildings for storing and conserving food. Nowadays, developing concrete with mechanical resistance for room temperatures is a parameter that can be achieved easily. On the other hand, associating it to low temperature of approximately 35 °C negative requires less empiricism, being necessary a suitable dosage method and a careful selection of the material constituents. This ongoing study involves these parameters. The presented concrete was analyzed through non-destructive tests that examines the material properties periodically and verifies its physical integrity. Concrete with and without incorporated air were studied. The results demonstrated that both are resistant to freezing.
Resumo:
There exist uniquely ergodic affine interval exchange transformations of [0,1] with flips which have wandering intervals and are such that the support of the invariant measure is a Cantor set.
Resumo:
We used morphological and molecular approaches to evaluate the diversity of free-living marine nematodes (order Enoplida) at four coastal sites in the Gulf of California and three on the Pacific coast of Baja California, Mexico. We identified 22 morphological species belonging to six families, of which Thoracostomopsidae and Oncholaimidae were the most diverse. The genus Mesacanthion (Thoracostomopsidae) was the most widespread and diverse. Five allopatric species, genetically and morphologically differentiated, were found in two localities in the Gulf of California (M. sp1 and M. sp2) and three in the Pacific coast (M. sp3, M. sp4 and M. sp5). Overall, we produced 19 and 20 sequences for the 18S and 28S genes, respectively. Neither gene displayed intraspecific polymorphisms, which allowed us to establish that some morphological variation was likely either ontogenetic or due to phenotypic plasticity. Although 18S and 28S phylogenies were topologically congruent (incongruence length difference test, P > 0.05), divergences between species were much higher in the 28S gene. Moreover, this gene possessed a stronger phylogenetic signal to resolve relationships involving Rhabdodemania and Bathylaimus. On the other hand, the close relationship of Pareurystomina (Enchilidiidae) with oncholaimids warrants further study. The 28S sequences (D2D3 domain) may be better suited for DNA barcoding of marine nematodes than those from the 18S rDNA, particularly for differentiating closely related or cryptic species. Finally, our results underline the relevance of adopting an integrative approach encompassing morphological and molecular analyses to improve the assessment of marine nematode diversity and advance their taxonomy.
Resumo:
The purpose of the present study was to evaluate the effects of 8 weeks of strength and power training on the expression of genes related to the canonical WNT pathway and beta-catenin protein levels in physically active men. Twenty-five subjects (27.4 +/- A 4.6 years) were balanced based on their relative maximum strength in the squat exercise (squat 1RM/body mass) and randomly assigned to strength training (ST) (n = 10), power training (PT) (n = 10), and control (C) (n = 5) groups. The ST and the PT groups performed high and low intensity squats, respectively, thrice a week, for 8 weeks. Muscle biopsies from the vastus lateralis muscle were collected before and after the training period. Relative strength and power increased similarly in both ST and PT groups (P < 0.001). Fiber cross-sectional area also increased similarly in both ST and PT groups. Gene expression and beta-catenin protein expression levels were assessed by real-time PCR and Western blot. Certain genes were up-regulated in the ST group (WNT1: 6.4-fold, P < 0.0001; SFRP1: 3.3-fold, P < 0.0001 and LEF1: 7.3-fold, P < 0.0001) and also in the PT group (WNT1: 24.9-fold, P < 0.0001; SFRP1: 2.7-fold, P < 0.0001; LEF1: 34.1-fold, P < 0.0001 and Cyclin D1: 7.7-fold, P < 0.001). In addition, the expression of key WNT pathway genes was substantially more responsive to PT than to ST (WNT1: P < 0.0001; LEF1: P < 0.0001 and Cyclin D1: P < 0.001). Finally, the total beta-catenin protein content increased only in the PT group (P < 0.05). Our data indicate that a PT regimen triggers greater responses in key elements of the WNT pathway.
Resumo:
The role of exercise training (ET) on cardiac renin-angiotensin system (RAS) was investigated in 3-5 month-old mice lacking alpha(2A-) and alpha(2C-)adrenoceptors (alpha(2A)/alpha(2C)ARKO) that present heart failure (HF) and wild type control (WT). ET consisted of 8-week running sessions of 60 min, 5 days/week. In addition, exercise tolerance, cardiac structural and function analysis were made. At 3 months, fractional shortening and exercise tolerance were similar between groups. At 5 months, alpha(2A)/alpha(2C)ARKO mice displayed ventricular dysfunction and fibrosis associated with increased cardiac angiotensin (Ang) II levels (2.9-fold) and increased local angiotensin-converting enzyme activity (ACE 18%). ET decreased alpha(2A)/alpha(2C)ARKO cardiac Ang II levels and ACE activity to age-matched untrained WT mice levels while increased ACE2 expression and prevented exercise intolerance and ventricular dysfunction with little impact on cardiac remodeling. Altogether, these data provide evidence that reduced cardiac RAS explains, at least in part, the beneficial effects of ET on cardiac function in a genetic model of HF.
Resumo:
Concurrent training is recommended for health improvement, but its acute effects on cardiovascular function are not well established. This study analyzed hemodynamics and autonomic modulation after a single session of aerobic (A), resistance (R), and concurrent (A + R) exercises. Twenty healthy subjects randomly underwent four sessions: control (C:30 min of rest), aerobic (A:30 min, cycle ergometer, 75% of VO(2) peak), resistance (R:6 exercises, 3 sets, 20 repetitions, 50% of 1 RM), and concurrent (AR: A + R). Before and after the interventions, blood pressure (BP), heart rate (HR), cardiac output (CO), and HR variability were measured. Systolic BP decreased after all the exercises, and the greatest decreases were observed after the A and AR sessions (-13 +/- 1 and -11 +/- 1 mmHg, respectively, P < 0.05). Diastolic BP decreased similarly after all the exercises, and this decrease lasted longer after the A session. CO also decreased similarly after the exercises, while systemic vascular resistance increased after the R and AR sessions in the recovery period (+4.0 +/- 1.7 and +6.3 +/- 1.9 U, respectively, P < 0.05). Stroke volume decreased, while HR increased after the exercises, and the greatest responses were observed after the AR session (SV, A = -14.6 +/- 3.6, R = -22.4 +/- 3.5 and AR = -23.4 +/- 2.4 ml; HR, A = +13 +/- 2, R = +15 +/- 2 vs. AR = +20 +/- 2 bpm, P < 0.05). Cardiac sympathovagal balance increased after the exercises, and the greatest increase was observed after the AR session (A = +0.7 +/- 0.8, R = +1.0 +/- 0.8 vs. AR = +1.2 +/- 0.8, P < 0.05). In conclusion, the association of aerobic and resistance exercises in the same training session did not potentiate postexercise hypotension, and increased cardiac sympathetic activation during the recovery period.
Resumo:
Myocardial infarction (MI) has been associated with increases in reactive oxygen species (ROS). Exercise training (ET) has been shown to exert positive modulations on vascular function and the purpose of the present study was to investigate the effect of moderate ET on the aortic superoxide production index, NAD(P)H oxidase activity, superoxide dismutase activity and vasomotor response in MI rats. Aerobic ET was performed during 11 weeks. Myocardial infarction significantly diminished maximal exercise capacity, and increased vasoconstrictory response to norepinephrine, which was related to the increased activity of NAD(P)H oxidase and basal superoxide production. On the other hand, ET normalized the superoxide production mostly due to decreased NAD(P)H oxidase activity, although a minor SOD effect may also be present. These adaptations were paralleled by normalization in the vasoconstrictory response to norepinephrine. Thus, diminished ROS production seems to be an important mechanism by which ET mediates its beneficial vascular effects in the MI condition.
Resumo:
The present study investigated the effects of 8 week of resistance training (RT) on hemodynamic and ventricular function on cardiac myosin ATPase activity, and on contractility of papillary muscles of rats. Groups: control (CO), electrically stimulated (ES), trained at 60% (TR 60%) and 75% of one repetition maximum (1RM) (TR 75%). Exercise protocol: 5 sets of 12 repetitions at 60 and 75% of 1RM, 5 times per week. The CO and ES groups had similar values for parameters analyzed (P > 0.05). Blood pressure (BP), heart rate (13%), left ventricle systolic pressure (LVSP 13%) decreased and cardiac myosin ATPase activity increased in the TR 75% group (90%, P < 0.05). The contractile performance of papillary muscles increased in trained rats (P < 0.05). Eight weeks of RT was associated with lowering of resting BP, heart rate and LVSP, improvements in contractility of the papillary muscle and an increase of cardiac myosin ATPase activity in rats.