999 resultados para 128.2
Resumo:
Numerous structural features occur in the Leg 128 cores from the Japan Sea. They include (1) gravity-induced structures such as slump folds, (2) dewatering structures comprising several sets of veins, and (3) larger faults and veins developed in the volcanic basement of the Yamato Basin as well as in the sedimentary rocks of the Oki Ridge and Kita-Yamato Trough. Gravity-induced structures, mainly slumps and associated faults, suggest the existence of paleoslopes and the dominance of gravitational tectonics during the early and middle Miocene, at the Pliocene/Pleistocene boundary, and during the Quaternary. Several types of mud-filled veins having various shapes were observed. These are especially abundant in the middle Miocene siliceous claystones and porcellanites from the Kita-Yamato Trough. They have been interpreted as dewatering conduits that formed preferentially in highly porous, water-saturated diatomaceous muds on a slope, because of episodic loss of sediment strength, collapse of the sediment framework, and consequent fluid migration. The central part of the vein serves once as a fluid conduit, whereas the transition between conduit-controlled and intergranular flow occurs at the branching extremities, with concentration of fines. The likely trigger responsible for the strength loss is seismic activity. Development of these veins, spatially and chronologically linked to small normal microfaults, implies an extensional regime having layer-parallel extension and a local bedding-parallel shear couple, probably the result of gravitational gliding. The brittle fractures found in Yamato Basin basement Hole 794D cores comprise joints, faults, and veins filled with chlorite-saponite, saponite, and calcite. They suggest a likely transpressive to transtensional regime around the early Miocene/ middle Miocene boundary, with a north-northeast-south-southwest compression alternating with a west-northwest-eastsoutheast extension. The faults from Site 799 cores on the Yamato Rise exhibit a prominent early Miocene-middle Miocene extensional environment, a late Miocene-early Pliocene phase of normal and strike-slip faulting, and a final phase that began during the latest Pliocene. Site 798, on the Oki Ridge, reveals faults that recorded a consistent extensional tectonic regime from Pliocene to the Holocene. These data support the pull-apart kinematic model for early Miocene-middle Miocene time, as regarding the stress regime deduced from the Yamato Basin basement fractures. The recent compression known in the eastern margin of the Japan Sea was not documented by compressive structures at any site. The late Miocene-early Pliocene faulting phase corresponds to a major and general reorganization of the stress distribution in the arc area. Evidence for rapid and main subsidence and synsedimentary extension of the Yamato Basin and Yamato Rise areas between 20 and 15 Ma, and the concomitant rotation of southwest Japan, raise the question of links between this opening and the Shimanto Belt collision in southwest Japan, between the arc and the Philippine Sea Plate.
Resumo:
During Legs 127 and 128, we found a systematic error in the index property measurements, in that the wet bulk density, grain density, and porosity did not satisfy well-established interrelationships. We have found that an almost constant difference exists between the weight of water lost during drying and the volume of water lost. This discrepancy is independent of volume or water content of the sample. The water losses should be equal because the density of water is close to 1.0 g/cm**3. The pycnometer wet volume measurement has been identified as the source of the systematic error. The wet volume on average is 0.2 cm**3 too low. For the rare cases when the water content is negligible, there is no offset. The source of the wet volume error results from the partial vapor pressure of water in the pycnometer cell. Newly corrected tables of index properties measured during Legs 127 and 128 are included. The corrected index properties are internally consistent. The data are in better agreement with theoretical models that relate the index properties to other physical properties, such as thermal conductivity and acoustic velocity. In future, a standard volume sampler should be used, or the wet volume should be calculated from the dry volume and the water loss by weight.
Resumo:
The capability of determining elemental concentrations through geochemical logging has recently been established. However, the quality of these data obtained in some environments has yet to be quantified. We assess the quality of geochemical logs compared with XRF results from a suite of core samples from Hole 798B. The resulting core/log correlations are only fair, because the tool has been adversely affected by the very high porosity of the formation. The results, however, do fall within the statistical uncertainties predicted by the processing. The recent application of a modified boron sleeve to the Ocean Drilling Program's geochemical logging tool is shown to reduce interference of borehole chlorine on the resultant chemistry.