940 resultados para 111201 Cancer Cell Biology
Resumo:
Despite considerable success in treatment of early stage localized prostate cancer (PC), acute inadequacy of late stage PC treatment and its inherent heterogeneity poses a formidable challenge. Clearly, an improved understanding of PC genesis and progression along with the development of new targeted therapies are warranted. Animal models, especially, transgenic immunocompetent mouse models, have proven to be the best ally in this respect. A series of models have been developed by modulation of expression of genes implicated in cancer-genesis and progression; mainly, modulation of expression of oncogenes, steroid hormone receptors, growth factors and their receptors, cell cycle and apoptosis regulators, and tumor suppressor genes have been used. Such models have contributed significantly to our understanding of the molecular and pathological aspects of PC initiation and progression. In particular, the transgenic mouse models based on multiple genetic alterations can more accurately address the inherent complexity of PC, not only in revealing the mechanisms of tumorigenesis and progression but also for clinically relevant evaluation of new therapies. Further, with advances in conditional knockout technologies, otherwise embryonically lethal gene changes can be incorporated leading to the development of new generation transgenics, thus adding significantly to our existing knowledge base. Different models and their relevance to PC research are discussed.
Resumo:
The CDKN2A gene maps to chromosome 9p21-22 and is responsible for melanoma susceptibility in some families. Its product, p16, binds specifically to CDK4 and CDK6 in vitro and in vivo, inhibiting their kinase activity. CDKN2A is homozygously deleted or mutated in a large proportion of tumor cell lines and some primary tumors, including melanomas. The aim of this study was to investigate the involvement of CDKN2A and elucidate the mechanisms of p16 inactivation in a panel of 60 cell lines derived from sporadic melanomas. Twenty-six (43%) of the melanoma lines were homozygously deleted for CDKN2A, and an additional 15 (25%) lines carried missense, nonsense, or frameshift mutations. All but one of the latter group were shown by microsatellite analysis to be hemizygous for the region of 9p surrounding CDKN2A. p16 was detected by Western blotting in only five of the cell lines carrying mutations. Immunoprecipitation of p16 in these lines, followed by Western blotting to detect the coprecipitation of CDK4 and CDK6, revealed that p16 was functionally compromised in all cell lines but the one that carried a heterozygous CDKN2A mutation. In the remaining 19 lines that carried wild-type CDKN2A alleles, Western blot analysis and immunoprecipitation indicated that 11 cell lines expressed a wild-type protein. Northern blotting was performed on the remaining eight cell lines and revealed that one cell line carried an aberrantly sized RNA transcript, and two other cell lines failed to express RNA. The promoter was found to be methylated in five cell lines that expressed CDKN2A transcript but not p16. Presumably, the message seen by Northern blotting in these cell lines is the result of cross-hybridization of the total cDNA probe with the exon 1beta transcript. Microsatellite analysis revealed that the majority of these cell lines were hemi/homozygous for the region surrounding CDKN2A, indicating that the wild-type allele had been lost. In the 11 cell lines that expressed functional p16, microsatellite analysis revealed loss of heterozygosity at the markers immediately surrounding CDKN2A in five cases, and the previously characterized R24C mutation of CDK4 was identified in one of the remaining 6 lines. These data indicate that 55 of 60 (92%) melanoma cell lines demonstrated some aberration of CDKN2A or CDK4, thus suggesting that this pathway is a primary genetic target in melanoma development.
Resumo:
CDKN2A, the gene encoding the cell-cycle inhibitor p16CDKN2A, was first identified in 1994. Since then, somatic mutations have been observed in many cancers and germline alterations have been found in kindreds with familial atypical multiple mole/melanoma (FAMMM), also known as atypical mole syndrome. In this review we tabulate the known mutations in this gene and discuss specific aspects, particularly with respect to germline mutations and cancer predisposition.
Resumo:
The majority of small-cell lung cancers (SCLCs) express p16 but not pRb. Given our previous study showing loss of pRb in Merkel cell carcinoma (MCC)/neuroendocrine carcinoma of the skin and the clinicopathological similarities between SCLC and MCC, we wished to determine if this was also the case in MCC. Twenty-nine MCC specimens from 23 patients were examined for deletions at 10 loci on 9p and 1 on 9q. No loss of heterozygosity (LOH) was seen in 9 patients including 2 for which tumour and cell line DNAs were examined. Four patients had LOH for all informative loci on 9p. Ten tumours showed more limited regions of loss on 9p, and from these 2 common regions of deletion were determined. Half of all informative cases had LOH at D9S168, the most telomeric marker examined, and 3 specimens showed loss of only D9S168. A second region (IFNA-D9S126) showed LOH in 10 (44%) cases, and case MCC26 showed LOH for only D9S126, implicating genes centromeric of the CDKN2A locus. No mutations in the coding regions of p16 were seen in 7 cell lines tested, and reactivity to anti-p16 antibody was seen in all 11 tumour specimens examined and in 6 of 7 cell lines from 6 patients. Furthermore, all cell lines examined reacted with anti-p14(ARF) antibody. These results suggest that neither transcript of the CDKN2A locus is the target of deletions on 9p in MCC and imply the existence of tumour-suppressor genes mapping both centromeric and telomeric of this locus.
Resumo:
Mutations in exon 3 of the CTNNB1 gene encoding beta-catenin have been reported in colorectal cancer cell lines and tumours. Although one study reported mutations or deletions affecting beta-catenin in 20% of melanoma cell lines, subsequent reports detected a much lower frequency of aberrations in uncultured melanomas. To determine whether this difference in mutation frequency reflected an in vitro culturing artefact, exon 3 of CTNNB1 was screened in a panel of 62 melanoma cell lines. In addition, reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect intragenic deletions affecting exon 3. One out of 62 (1.6%) cell lines was found to carry a mutation, indicating that aberration of the Wnt-1/wingless pathway through activation of beta-catenin is a rare event, even in melanoma cell lines.
Resumo:
Deletions detected in cytogenetic and loss of heterozygosity (LOH) studies indicate that at least one tumour suppressor gene maps to the long arm of chromosome 10. Previous deletion mapping studies have observed LOH on 10q in about 30% of melanomas analysed. The PTEN gene, mapping to chromosome band 10q23.3, encodes a protein with both lipid and protein phosphatase activity. Somatic mutations and deletions in have been detected in a variety of cell lines and tumours, including melanoma samples. We performed mutation analyses and extensive allelic loss studies to investigate the role this gene plays in melanoma pathogenesis. We found that a total of 34 out of 57 (60%) melanoma cell lines carried hemizygous deletions of chromosome 10q encompassing the PTEN locus. A further three cell lines carried smaller deletions excluding PTEN. Inactivation of both PTEN alleles by exon-specific homozygous deletion or mutation was observed in 13 out of 57 (23%) melanoma cell lines. The mutation spectrum observed does not indicate an important role for ultraviolet radiation in the genesis of these mutations, and evidence from three cell lines supports the acquisition of PTEN aberrations in culture. Ten out of 49 (20%) matched melanoma tumour/normal samples harboured hemizygous deletions of either the whole chromosome or most of the long arm. Mutations within were detected in only one of the 10 tumours demonstrating LOH at 10q23 that were analysed. These results suggest that PTEN inactivation may be important for the propagation of melanoma cells in culture, and that another chromosome 10 tumour suppressor gene may be important for melanoma pathogenesis.
Resumo:
Although molecularly targeted therapies have been effective in some cancer types, no targeted therapy is approved for use in endometrial cancer. The recent identification of activating mutations in fibroblast growth factor receptor 2 (FGFR2) in endometrial tumors has generated a new avenue for the development of targeted therapeutic agents. The majority of the mutations identified are identical to germline mutations in FGFR2 and FGFR3 that cause craniosynostosis and hypochondroplasia syndromes and result in both ligand-independent and ligand-dependent receptor activation. Mutations that predominantly occur in the endometrioid subtype of endometrial cancer, are mutually exclusive with KRAS mutation, but occur in the presence of PTEN abrogation. In vitro studies have shown that endometrial cancer cell lines with activating FGFR2 mutations are selectively sensitive to a pan-FGFR inhibitor, PD173074. Several agents with activity against FGFRs are currently in clinical trials. Investigation of these agents in endometrial cancer patients with activating FGFR2 mutations is warranted.
Resumo:
Biophysical and biochemical properties of the microenvironment regulate cellular responses such as growth, differentiation, morphogenesis and migration in normal and cancer cells. Since two-dimensional (2D) cultures lack the essential characteristics of the native cellular microenvironment, three-dimensional (3D) cultures have been developed to better mimic the natural extracellular matrix. To date, 3D culture systems have relied mostly on collagen and Matrigel™ hydrogels, allowing only limited control over matrix stiffness, proteolytic degradability, and ligand density. In contrast, bioengineered hydrogels allow us to independently tune and systematically investigate the influence of these parameters on cell growth and differentiation. In this study, polyethylene glycol (PEG) hydrogels, functionalized with the Arginine-glycine-aspartic acid (RGD) motifs, common cell-binding motifs in extracellular matrix proteins, and matrix metalloproteinase (MMP) cleavage sites, were characterized regarding their stiffness, diffusive properties, and ability to support growth of androgen-dependent LNCaP prostate cancer cells. We found that the mechanical properties modulated the growth kinetics of LNCaP cells in the PEG hydrogel. At culture periods of 28 days, LNCaP cells underwent morphogenic changes, forming tumor-like structures in 3D culture, with hypoxic and apoptotic cores. We further compared protein and gene expression levels between 3D and 2D cultures upon stimulation with the synthetic androgen R1881. Interestingly, the kinetics of R1881 stimulated androgen receptor (AR) nuclear translocation differed between 2D and 3D cultures when observed by immunofluorescent staining. Furthermore, microarray studies revealed that changes in expression levels of androgen responsive genes upon R1881 treatment differed greatly between 2D and 3D cultures. Taken together, culturing LNCaP cells in the tunable PEG hydrogels reveals differences in the cellular responses to androgen stimulation between the 2D and 3D environments. Therefore, we suggest that the presented 3D culture system represents a powerful tool for high throughput prostate cancer drug testing that recapitulates tumor microenvironment. © 2012 Sieh et al.
Resumo:
An association between the metabolic syndrome and reduced testosterone levels has been identified, and a specific inverse relationship between insulin and testosterone levels suggests that an important metabolic crosstalk exists between these two hormonal axes; however, the mechanisms by which insulin and androgens may be reciprocally regulated are not well described. Androgen-dependant gene pathways regulate the growth and maintenance of both normal and malignant prostate tissue, and androgen-deprivation therapy (ADT) in patients exploits this dependence when used to treat recurrent and metastatic prostate cancer resulting in tumour regression. A major systemic side effect of ADT includes induction of key features of the metabolic syndrome and the consistent feature of hyperinsulinaemia. Recent studies have specifically identified a correlation between elevated insulin and high-grade PCa and more rapid progression to castrate resistant disease. This paper examines the relationship between insulin and androgens in the context of prostate cancer progression. Prostate cancer patients present a promising cohort for the exploration of insulin stabilising agents as adjunct treatments for hormone deprivation or enhancers of chemosensitivity for treatment of advanced prostate cancer.
Resumo:
Aurora Kinase (AK) based therapy targeting AK-A & B is effective against some cancers. We have explored its potential against previously unreported incurable, metastatic androgen depletion independent Prostate Cancer (ADIPC). We used androgen sensitive (AS) and ADI lines derived from Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mice. The relevance of this model was unequivocally established through focussed array, quantitative PCR and western blotting studies; significantly greater alteration of genes (fold change and number) representing major cancer pathways was shown in ADI cells compared to AS lines. A marked enhancement of in vivo growth of the ADI subline showing the greatest degree of gene modulations [TRAMP C1 (TC1)-T5: TC1-T5] reflected this. In contrast to the parental AS TC1 line, TC1-T5 cells grew with 100% incidence in the prostate, as lung pseudometastases and migrated to the bone and other soft tissues. The potential involvement of AKs in this transition was indicated by the significant upregulation of AK-A/B and their downstream regulators, survivin and phosphorylated-histone H3 in TC1-T5 cells compared to TC1 cells. This led to enhanced sensitivity of TC1-T5 cells to the pan-AK inhibitor, VX680 and to significant reduction in in vivo tumour growth rates when AK-A and/or B were downregulated in TC1-T5 cells. This cell growth inhibition was markedly enhanced when both AKs were downregulated and also led to substantially greater sensitivity of these cells to docetaxel, the only chemotherapeutic with activity against ADI PC. Finally, use of VX680 with docetaxel led to impressive synergies suggesting promise for treating clinical ADI metastatic PC.
Resumo:
Prostate cancer (CaP) is the second leading cause of cancer-related deaths in North American males and the most common newly diagnosed cancer in men world wide. Biomarkers are widely used for both early detection and prognostic tests for cancer. The current, commonly used biomarker for CaP is serum prostate specific antigen (PSA). However, the specificity of this biomarker is low as its serum level is not only increased in CaP but also in various other diseases, with age and even body mass index. Human body fluids provide an excellent resource for the discovery of biomarkers, with the advantage over tissue/biopsy samples of their ease of access, due to the less invasive nature of collection. However, their analysis presents challenges in terms of variability and validation. Blood and urine are two human body fluids commonly used for CaP research, but their proteomic analyses are limited both by the large dynamic range of protein abundance making detection of low abundance proteins difficult and in the case of urine, by the high salt concentration. To overcome these challenges, different techniques for removal of high abundance proteins and enrichment of low abundance proteins are used. Their applications and limitations are discussed in this review. A number of innovative proteomic techniques have improved detection of biomarkers. They include two dimensional differential gel electrophoresis (2D-DIGE), quantitative mass spectrometry (MS) and functional proteomic studies, i.e., investigating the association of post translational modifications (PTMs) such as phosphorylation, glycosylation and protein degradation. The recent development of quantitative MS techniques such as stable isotope labeling with amino acids in cell culture (SILAC), isobaric tags for relative and absolute quantitation (iTRAQ) and multiple reaction monitoring (MRM) have allowed proteomic researchers to quantitatively compare data from different samples. 2D-DIGE has greatly improved the statistical power of classical 2D gel analysis by introducing an internal control. This chapter aims to review novel CaP biomarkers as well as to discuss current trends in biomarker research from two angles: the source of biomarkers (particularly human body fluids such as blood and urine), and emerging proteomic approaches for biomarker research.
Resumo:
Macrophage inhibitory cytokine-1 (MIC-1/GDF15), a divergent member of the TGF-β superfamily, is over-expressed by many common cancers including those of the prostate (PCa) and its expression is linked to cancer outcome. We have evaluated the effect of MIC-1/GDF15 overexpression on PCa development and spread in the TRAMP transgenic model of spontaneous prostate cancer. TRAMP mice were crossed with MIC-1/GDF15 overexpressing mice (MIC-1fms) to produce syngeneic TRAMPfmsmic-1 mice. Survival rate, prostate tumor size, histopathological grades and extent of distant organ metastases were compared. Metastasis of TC1-T5, an androgen independent TRAMP cell line that lacks MIC-1/GDF15 expression, was compared by injecting intravenously into MIC-1fms and syngeneic C57BL/6 mice. Whilst TRAMPfmsmic-1 survived on average 7.4 weeks longer, had significantly smaller genitourinary (GU) tumors and lower PCa histopathological grades than TRAMP mice, more of these mice developed distant organ metastases. Additionally, a higher number of TC1-T5 lung tumor colonies were observed in MIC-1fms mice than syngeneic WT C57BL/6 mice. Our studies strongly suggest that MIC-1/GDF15 has complex actions on tumor behavior: it limits local tumor growth but may with advancing disease, promote metastases. As MIC-1/GDF15 is induced by all cancer treatments and metastasis is the major cause of cancer treatment failure and cancer deaths, these results, if applicable to humans, may have a direct impact on patient care.