955 resultados para 100706 Nanofabrication Growth and Self Assembly


Relevância:

100.00% 100.00%

Publicador:

Resumo:

novel biodegradable Y-shaped copolymer, poly(L-lactide)(2)-b-poly(gamma-benzyl-L-glutamic acid) (PLLA(2)-b-PBLG), was synthesized by the ring-opening polymerization (ROP) of N-carboxyanhydride of gamma-benzyl-L-glutamate (BLG-NCA) with centrally amino-functionalized poly(L-lactide), PLLA(2)-NH2, as a macroinitiator in a convenient way. The Y-shaped copolymer and its precursors were characterized by H-1 NMR, FT-IR, GPC, WAXD and DSC measurements. The self-assembly of the PLLA(2)-b-PBLG copolymer in toluene and benzyl alcohol was examined. It was found that the self-assembly of the copolymer was dependent on solvent and on relative length of the PBLG block. For a copolymer with PLLA blocks of 26 in total degree of polymerization (DP), if the PBLG block was long enough (e.g., DP = 54 or more), the copolymer/toluene solution became a transparent gel at room temperature. In benzyl alcohol Solution, only PLLA(2)-b-PBLG containing ca. 190 BLG residues could form a gel: those with shorter PBLG blocks (e.g., DP = 54) became nano-scale fibrous aggregates and these aggregates were dispersed in benzyl alcohol homogeneously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel amphiphilic biodegradable triblock copolymer (PGL-PLA-PGL) with polylactide (PLA) as hydrophobic middle block and poly(glutamic acid) (PGL) as hydrophilic lateral blocks was successfully synthesized by ring-opening polymerization (ROP) Of L-lactide (LA) and N-carboxy anhydride (NCA) consecutively and by subsequent catalytic hydrogenation. The results of cell experiment of PGL-PLA-PGL suggested that PGL could improve biocompatibility of polyester obviously. The copolymer could form micelles of spindly shape easily in aqueous solution. The pendant carboxyl groups of the triblock copolymer were further activated with N-hydroxysuccinimide and combined with a cell-adhesive peptide GRGI)SY Incorporation of the oligopeptide further enhanced the hydrophilicity and led to formation of spherical micelles. PGL-PLAPGL showed better cell adhesion and spreading ability than pure PLA and the GRGDSY-containing copolymer exhibited even further improvement in cell adhesion and spreading ability, indicating that the copolymer could find a promising application in drug delivery or tissue engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lysozyme monolayer-protected gold nanoparticles (Au NPs) which are hydrophilic and biocompatible and show excellent colloidal stability at low temperature, ca. 4 degrees C, were synthesized in aqueous medium by chemical reduction of HAuCl4 with NaBH4 in the presence of a familiar small enzyme, lysozyme. UV-vis spectra, transmission electron microscopy (TEM), atomic force microscopy, and X-ray photoelectron spectroscopy characterization of the as prepared nanoparticles revealed the formation of well-dispersed An NPs of ca. 2 nm diameter. Moreover, the color change of the An NP solution as well as UV-vis spectroscopy and TEM measurements have also demonstrated the occurrence of Ostwald ripening of the nanoparticles at low temperature. Further characterization with Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering indicated the formation of a monolayer of lysozyme molecules on the particle surface. FTIR data also indicated the intactness of the protein molecules coated on An NPs. All the characterization results showed that the monodisperse An NPs are well-coated directly with lysozyme. Driven by the dipole-dipole attraction, the protein-stabilized Au NPs self-assembled into network structures and nanowires upon aging under ambient temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly( ethylene oxide)-b-poly(N, N-dimethylacrylamide) (PEO-b-PDMA) was synthesized by successive atom transfer radical polymerization (ATRP) of N, N-dimethylacrylamide (DMA) monomer using PEO-Br macro initiators as initiator, CuBr and 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazamacrocyclotetra decane (Me-6[14] aneN(4)) as catalyst and ligand. PEO-Br macroinitiator was synthesized by esterification of PEO with 2-bromoisobutyryl bromide. GPC and H-1 NMR studies show that the plot of ln([DMA](0)/[ DMA]) against the reaction time is linear, and the molecular weight of the resulting PDMA increased linearly with the conversion. Within 3 h, the polymerization can reach almost 60% of conversion. PEO-b-PDMA copolymer with low polydispersity index (M-w/M-n approximate to 1.1) is obtained. Self-assembly of PEO-b-PDMA in selective solvents is also studied. It could self-assemble into micelles in methanol/acetone (1/10, v/v) solution. TEM analyses of the PEO-b-PDMA micelles with narrow size distribution revealed that their size and shape depend much on the copolymer composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Didodecyldimethylammonium bromide (DDAB) lipid bilayer-protected gold nanoparticles (AuNPs), which were stable and hydrophilic, were synthesized by in situ reduction of HAuCl4 with NaBH4 in an aqueous medium in the presence of DDAB. As-prepared nanoparticles were characterized by UV-vis spectra, transmission electron microscopy, dynamic light scattering analysis, and X-ray photoelectron spectroscopy. All these data supported the formation of AuNPs. Fourier transform infrared spectroscopy (FTIR) and differential thermal analysis/thermogravimetric analysis data revealed that DDAB existed in a bilayer structure formed on the particle surface, resulting in a positively charged particle surface. The FTIR spectra also indicated that the DDAB bilayer coated on the surface of AuNPs was probably in the ordered gel phase with some end-gauche defects. On the basis of electrostatic interactions between such AuNPs and anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS), we successfully fabricated (PSS/AuNP)(n) multilayers on a cationic polyelectrolyte poly(ethylenimine) coated indium tin oxide substrate via the layer-by-layer self-assembly technique and characterized as-formed multilayers with UV-vis spectra and atomic force microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The miscibility and structure of A-B copolymer/C homopolymer blends with special interactions were studied by a Monte Carlo simulation in two dimensions. The interaction between segment A and segment C was repulsive, whereas it was attractive between segment B and segment C. In order to study the effect of copolymer chain structure on the morphology and structure of A-B copolymer/C homopolymer blends, the alternating, random and block A-B copolymers were introduced into the blends, respectively. The simulation results indicated that the miscibility of A-B block copolymer/C homopolymer blends depended on the chain structure of the A-B copolymer. Compared with alternating or random copolymer, the block copolymer, especially the diblock copolymer, could lead to a poor miscibility of A-B copolymer/C homopolymer blends. Moreover, for diblock A-B copolymer/C homopolymer blends, obvious self-organized core-shell structure was observed in the segment B composition region from 20% to 60%. However, if diblock copolymer composition in the blends is less than 40%, obvious self-organized core-shell structure could be formed in the B-segment component region from 10 to 90%. Furthermore, computer statistical analysis for the simulation results showed that the core sizes tended to increase continuously and their distribution became wider with decreasing B-segment component.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field configured assembly is a programmable force field method that permits rapid, "hands-free" manipulation, assembly, and integration of mesoscale objects and devices. In this method, electric fields, configured by specific addressing of receptor and counter electrode sites pre-patterned at a silicon chip substrate, drive the field assisted transport, positioning, and localization of mesoscale devices at selected receptor locations. Using this approach, we demonstrate field configured deterministic and stochastic self-assembly of model mesoscale devices, i.e., 50 mum diameter, 670 nm emitting GaAs-based light emitting diodes, at targeted receptor sites on a silicon chip. The versatility of the field configured assembly method suggests that it is applicable to self-assembly of a wide variety of functionally integrated nanoscale and mesoscale systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les travaux de recherche présentés ici avaient pour objectif principal la synthèse de copolymères statistiques à base d’éthylène et d’acide acrylique (AA). Pour cela, la déprotection des groupements esters d’un copolymère statistique précurseur, le poly(éthylène-co-(tert-butyl)acrylate), a été effectuée par hydrolyse à l’aide d’iodure de triméthylsilyle. La synthèse de ce précurseur est réalisée par polymérisation catalytique en présence d’un système à base de Palladium (Pd). Le deuxième objectif a été d’étudier et de caractériser des polymères synthétisés à l’état solide et en suspension colloïdale. Plusieurs copolymères précurseurs comprenant différents pourcentages molaires en tert-butyl acrylate (4 à 12% molaires) ont été synthétisés avec succès, puis déprotégés par hydrolyse pour obtenir des poly(éthylène-coacide acrylique) (pE-co-AA) avec différentes compositions. Seuls les copolymères comprenant 10% molaire ou plus de AA sont solubles dans le Tétrahydrofurane (THF) et uniquement dans ce solvant. De telles solutions peuvent être dialysées dans l’eau, ce qui conduit à un échange lent entre cette dernière et le THF, et l’autoassemblage du copolymère dans l’eau peut ensuite être étudié. C’est ainsi qu’ont pu être observées des nanoparticules stables dans le temps dont le comportement est sensible au pH et à la température. Les polymères synthétisés ont été caractérisés par Résonance Magnétique Nucléaire (RMN) ainsi que par spectroscopie Infra-Rouge (IR), avant et après déprotection. Les pourcentages molaires d’AA ont été déterminés par combinaison des résultats de RMN et ii de titrages conductimètriques. A l’état solide, les échantillons ont été analysés par Calorimétrie différentielle à balayage (DSC) et par Diffraction des rayons X. Les solutions colloïdales des polymères pE-co-AA ont été caractérisées par Diffusion dynamique de la lumière et par la DSC-haute sensibilité. De la microscopie électronique à transmission (TEM) a permis de visualiser la forme et la taille des nanoparticules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single crystal X-ray diffraction studies reveal that three hexapeptides with general formula Boc-Ile-Aib-Xx-Ile-Aib-Yy-OMe, where Xx and Yy are Leu in peptide I, Len and Phe in peptide II, and Phe and Leu in peptide III, respectively, adopt equivalent conformations that can be described as mixed 3(10)/alpha-helice with two 4 -> 1 and two 5 -> 1 intramolecular N-H center dot center dot center dot O=C H-bonds. The peptides do not generate any helixterminating Schellman motif despite having Aib at the penultimate position from C-terminus. In the crystalline state, the helices are packed in head-to-tail fashion through intermolecular hydrogen bonds to create supramolecular helical structures. The CD Studies of the three hexapeptides in acetonitrile indicate that they are folded in well-developed 3(10)-helical structures. NMR studies of peptide I in CDCl3 also suggest the formation of a homogeneous 3 m-helical structure. The field emission scanning electron microscopic (FE-SEM) images of peptide 11 in the solid state reveal a non-twisted ribbon-like morphology, which is formed through lateral association of non-twisted filaments. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This mini-review outlines recent key developments in the use of dendritic architectures in self-assembly processes via utilisation of molecular recognition motifs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-assembly and hydrogelation properties of two Fmoc-tripeptides [Fmoc = N-(fluorenyl-9-methoxycarbonyl)] are investigated, in borate buffer and other basic solutions. A remarkable difference in self-assembly properties is observed comparing Fmoc-VLK(Boc) with Fmoc-K(Boc)LV, both containing K protected by N(epsilon)-tert-butyloxycarbonate (Boc). In borate buffer, the former peptide forms highly anisotropic fibrils which show local alignment, and the hydrogels show flow-aligning properties. In contrast, Fmoc-K(Boc)LV forms highly branched fibrils that produce isotropic hydrogels with a much higher modulus (G' > 10(4) Pa), and lower concentration for hydrogel formation. The distinct self-assembled structures are ascribed to conformational differences, as revealed by secondary structure probes (CD, FTIR, Raman spectroscopy) and X-ray diffraction. Fmoc-VLK(Boc) forms well-defined beta-sheets with a cross-beta X-ray diffraction pattern, whereas Fmoc-KLV(Boc) forms unoriented assemblies with multiple stacked sheets. Interchange of the K and V residues when inverting the tripeptide sequence thus leads to substantial differences in self-assembled structures, suggesting a promising approach to control hydrogel properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An opioid (leucine-enkephalin) conformational analogue forms diverse nanostructures such as vesicles, tubes, and organogels through self-assembly. The nanovesicles encapsulate the natural hydrophobic drug curcumin and allow the controlled release through cation-generated porogens in membrane mimetic solvent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wide rim tetraurea calix[4]arenes form hydrogen bonded dimeric capsules in apolar solvents in the presence of a suitable guest, which must be included in the cavity. The monomeric and dimeric form are never observed simultaneously under usual conditions. In general the combination of two different alkyl or aryl tetraurea derivatives results in the mixture of two homodimers and a heterodimer, however, only the heterodimeric species is observed in the 1:1 mixture of aryl and tosyl ureas. The (hetero)dimerization of oligourea calix[4]arenes (units) was used to construct larger structures via self-assembly of multiple calixarenes (building blocks) containing two (or more) covalently connected units. Among these self-assembled structures linear or branched polymers, cyclic oligomers and well-organized dendrimers were envisaged. The synthesis of the building blocks requires the preparation of calix[4]arene units possessing one (or more) functional group at the narrow or wide rim. Finally the oligourea units were covalently connected either directly or via suitable spacers within appropriate building blocks using amide bonds. Self-assembly properties of such building blocks were investigated.