953 resultados para 1,2,4-OXADIAZOLES
Resumo:
The title two-dimensional coordination polymer was synthesised and characterised by X-ray diffraction analysis.
Resumo:
In the title compound, C12H11N7OS, the dihedral angles made by the thione-substituted triazole ring with the other triazole ring and the benzene ring are 71.56 (2) and 47.89 (3)degrees, respectively. Inter- and intramolcular hydrogen-bond interactions stabilize the structure.
Resumo:
In the title compound, C12H10FN7S, the dihedral angles made by the plane of the thione-substituted triazole ring with the planes of the other triazole ring and the benzene ring are 74.55 (2) and 11.50 (3)degrees, respectively. The structure shows a number of N - H center dot center dot center dot N intermolecular hydrogen-bonding interactions, and weak C - H center dot center dot center dot S intra- and intermolecular interactions.
Resumo:
In the title compound, C-18(14)3(3)H(FN)O, the dihedral angles made by the triazole ring with the plane of the central benzene ring and the p-fluorophenylcarbonyl group are 82.09 ( 2) and 82.05 (2), respectively. There are weak C-H...O intra- and intermolecular interactions in the crystal structure, which contribute to the stability.
Resumo:
The title compound, 2-(methoxybenzoyl)-N-phenyt-2-(1,2,4-triazol-1-yl)thioacetamide was synthesized by several reactions from 4-methoxyacetophenone, triazole and phenyl isothiocyanate. The structure was identified by elemental analysis, H-1 NMR, MS and IR. The single crystal structure of 2-(methoxybenzoyl)-N-phenyl-2-(1,2,4-triazol-1-yl)thioacetamide was determined with X-ray diffraction. The preliminary bioassays show that the title compound exhibits weak antifungal activities and plant-growth regulatory activity.
Resumo:
The crystal structure of the title compound, C19H15FN6OS, is stabilized by a weak intermolecular C-(HN)-N-... hydrogen-bond interaction.
Resumo:
In the title compound, C12H10ClN7S, the dihedral angles made by the plane of the thione-substituted triazole ring with the planes of the other triazole ring and the benzene ring are 73.57 (3) and 46.65 (2)degrees, respectively. Inter-and intramolcular hydrogen bonds and pi-pi stacking interactions stabilize the structure.
Resumo:
In order to find leading compounds with an excellent fungicidal activity, the tide compound 2-(1,3-dithiolan-2-yl-idene) -1-phenyl-2-(1,2,4-triazol-1-yl) ethanone was synthesized according to the biological isosterism and its structure was confirmed by means of IR, MS, H-1 NMR and elemental analysis. The single crystal structure of the tide compound was determined by X-ray diffraction. The preliminary biological test shows that the synthesized compound exhibits some biological activities.
Resumo:
The title compound, N'-(4-methoxybenzylidene)-2-(1H-1,2,4-triazol-1-yl)acetohydrazide, was synthesized and its structure was confirmed by means of IR, MS,H-1 NMR and elemental analysis. The single crystal structure of the title compound was determined by X-ray diffraction. The preliminary biological test shows that the synthesized compound has a low antifungal activity.
Resumo:
In the title compound, C12H10FN7S, the dihedral angles made by the plane of the thione-substituted triazole ring with the planes of the other triazole ring and the benzene ring are 71.94 (3) and 40.10 (2)degrees, respectively. Inter- and intramolecular hydrogen-bond and pi-pi stacking interactions stabilize the structure.
Resumo:
N'-(4-fluorobenzylidene)-2-(1H-1 2,4-triazole-1-yl) acetohydrazide was synthesized by the reaction of 4-fluorobenzaldehyde with 2-(1H-1 2,4-triazole-1-yl) acetohydrazide. The structure was confirmed via elemental analysis, MS, H-1 NMR, IR, and X-ray diffraction. It crystallized in a monoclinic system with space group P2 (1) a = 0.4905 (1) nm, b = 0.8160 (2) nm, c = 1.4105 (3) nm, beta = 93.33 (3)degrees, Z = 2, V = 0.5636 (2) nm(3), D-c = 1.457 Mg/m(3), mu = 0.112 mm(-1), F(000) = 256, and final R-1 = 0.0685. Several intermolecular hydrogen-bond interactions existed in the crystal structure, facilitating the stabilization of the compound.
Resumo:
A novel triazole derivative 4-(2-hydrobenzylideneamino)-3-(1, 2, 4-triazol-4-ylmethyl)-1H-1, 2, 4-triazole-5 (4H)-thione(1) was synthesized and characterized using elemental analysis, MR, and H-1 NMR, and its crystal structure was determined via X-ray single crystal diffraction analysis. Crystal data: monoclinic, P2 (1)/c, a = 0.83335 (9) nm, b = 1. 49777 (16) run, c = 1. 14724 (12) nm, beta = 107. 990 (2)degrees, D = 1. 470 Mg/m(3), and Z = 4. The geometries and the vibrational frequencies were determined using the density functional theory(DFT) method at the B3LYP/6-31G* level. To demonstrate the accuracy of the reaction route of compound 1, one of the important intermediates was also tested using the same method. The structural parameters of the two compounds calculated using the DFT study are close to those of the crystals, and the harmonic vibrations of the two compounds computed via the DFT method are in good agreement with those in the observed IR spectral data. The thermodynamic properties of the title compound were calculated, and the compound shows a good structural stability at normal temperature. The test results of biological activities show that it has a certain bactericidal ability.
Resumo:
The X-ray crystal structures of two lamotrigine derivatives (I) 3,5-diamino-6-(2-chlorophenyl)-1,2,4-triazine, C9H8ClN5, (465BL) as a hydrate, and (II) 3,5-diamino-6-(3,6-dichlorophenyl)-1,2,4-triazine, C9H7Cl2N5, (469BR) as a methanol solvate, have been carried out at liquid nitrogen temperature and room temperature, respectively. A detailed comparison of the two structures is given. Both are centrosymmetric with (I) in the orthorhombic space group Pbca, a = 12.2507(3), b = 15.7160(6), c = 21.71496(9) angstrom, Z = 16, and (II) in the monoclinic space group C2/c, a = 38.553(3), b = 4.9586(2), c = 14.546(2) angstrom, beta = 111.59(1)degrees, Z = 8. Final R indices [I > 2sigma(I)] for (I) are R1 = 0.0670, wR2 = 0.1515 and for (II) R1 = 0.0434, wR2 = 0.1185. Structure (I) has water of crystallization in the lattice and (II) includes a solvated CH3OH. Structure (I) is characterized by having two crystallographically independent molecules, A and B, of 465BL, per asymmetric unit. Molecule B has a very unusual feature in that the 2-chlorophenyl ring is statistically disordered, occupying site (1) in 87.5% of the structure and site (2) in 12.5% of the structure. Sites (1) and (2) are related by an exact 180 degrees pivot of the phenyl ring about the ring linkage bond. The presence of two independent molecules per asymmetric unit provides an ideal opportunity for the conformational flexibility of the molecule 465BL to be studied. Structure (I) also includes a further unusual feature in that the lattice contains one fully occupied water molecule and an additional solvated water which is only 33% occupied.
Resumo:
The X-ray crystal structures of two lamotrigine derivatives (I) 2-methyl, 3-amino, 5-imino-6-(2, 3-dichlorophenyl)-1,2,4-triazine, C10H9Cl2N5, as the hemi hydrate and (II) 2-methyl,3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine, C10H10Cl2N5, as the isethionate-water solvate, have been carried out at liquid nitrogen temperature. A detailed comparison of the two structures is given. Both are monoclinic and centrosymmetric, with (I) in space group C2/c, and (II) in space group P2(1)/n. For (I) the unit cell dimensions are a = 19.5466(10), b = 7.5483(4), c = 15.7861(8) angstrom, beta = 91.458(3)degrees, volume = 2328.4(2) angstrom(3), Z = 8, density = 1.590 Mg/m(3); for (II). For (II) the unit cell dimensions are a = 6.0566(2), b = 11.0084(4) c = 23.9973(9) angstrom, beta = 92.587(3)degrees, volume = 1598.35(10) angstrom(3), Z = 4, density = 1.597 Mg/m(3). For (I) final R indices [I > 2sigma(I)] are R1 = 0.0356, wR2 = 0.0782 and R indices (all data) are R1 = 0.0424, wR2 = 0.0817. For (II) final R indices [I > 2sigma(I)] are R1 = 0.0380, wR2 = 0.0871 and R indices (all data) R1 = 0.0558, wR2 = 0.0949. Both structures have a molecule of water of crystallization and (II) also includes a solvated CH3SO3. Comparisons are made between the two structures. Structure (I) is very unusual in having a = NH group at position C5' on the triazine ring. No other examples of this particular substitution, which is usually -NH2, have been reported.