1000 resultados para Àrees temàtiques de la UPC::Enginyeria electrònica i telecomunicacions
Resumo:
This paper presents a model of the Stokes emission vector from the ocean surface. The ocean surface is described as an ensemble of facets with Cox and Munk's (1954) Gram-Charlier slope distribution. The study discusses the impact of different up-wind and cross-wind rms slopes, skewness, peakedness, foam cover models and atmospheric effects on the azimuthal variation of the Stokes vector, as well as the limitations of the model. Simulation results compare favorably, both in mean value and azimuthal dependence, with SSM/I data at 53° incidence angle and with JPL's WINDRAD measurements at incidence angles from 30° to 65°, and at wind speeds from 2.5 to 11 m/s.
Resumo:
A recently developed technique, polarimetric radar interferometry, is applied to tackle the problem of the detection of buried objects embedded in surface clutter. An experiment with a fully polarimetric radar in an anechoic chamber has been carried out using different frequency bands and baselines. The processed results show the ability of this technique to detect buried plastic mines and to measure their depth. This technique enables the detection of plastic mines even if their backscatter response is much lower than that of the surface clutter.
Resumo:
The problem of synthetic aperture radar interferometric phase noise reduction is addressed. A new technique based on discrete wavelet transforms is presented. This technique guarantees high resolution phase estimation without using phase image segmentation. Areas containing only noise are hardly processed. Tests with synthetic and real interferograms are reported.
Resumo:
This work describes a simulation tool being developed at UPC to predict the microwave nonlinear behavior of planar superconducting structures with very few restrictions on the geometry of the planar layout. The software is intended to be applicable to most structures used in planar HTS circuits, including line, patch, and quasi-lumped microstrip resonators. The tool combines Method of Moments (MoM) algorithms for general electromagnetic simulation with Harmonic Balance algorithms to take into account the nonlinearities in the HTS material. The Method of Moments code is based on discretization of the Electric Field Integral Equation in Rao, Wilton and Glisson Basis Functions. The multilayer dyadic Green's function is used with Sommerfeld integral formulation. The Harmonic Balance algorithm has been adapted to this application where the nonlinearity is distributed and where compatibility with the MoM algorithm is required. Tests of the algorithm in TM010 disk resonators agree with closed-form equations for both the fundamental and third-order intermodulation currents. Simulations of hairpin resonators show good qualitative agreement with previously published results, but it is found that a finer meshing would be necessary to get correct quantitative results. Possible improvements are suggested.
Resumo:
Voltage fluctuations caused by parasitic impedances in the power supply rails of modern ICs are a major concern in nowadays ICs. The voltage fluctuations are spread out to the diverse nodes of the internal sections causing two effects: a degradation of performances mainly impacting gate delays anda noisy contamination of the quiescent levels of the logic that drives the node. Both effects are presented together, in thispaper, showing than both are a cause of errors in modern and future digital circuits. The paper groups both error mechanismsand shows how the global error rate is related with the voltage deviation and the period of the clock of the digital system.
Resumo:
Process variations are a major bottleneck for digital CMOS integrated circuits manufacturability and yield. That iswhy regular techniques with different degrees of regularity are emerging as possible solutions. Our proposal is a new regular layout design technique called Via-Configurable Transistors Array (VCTA) that pushes to the limit circuit layout regularity for devices and interconnects in order to maximize regularity benefits. VCTA is predicted to perform worse than the Standard Cell approach designs for a certain technology node but it will allow the use of a future technology on an earlier time. Ourobjective is to optimize VCTA for it to be comparable to the Standard Cell design in an older technology. Simulations for the first unoptimized version of our VCTA of delay and energy consumption for a Full Adder circuit in the 90 nm technology node are presented and also the extrapolation for Carry-RippleAdders from 4 bits to 64 bits.
Resumo:
This paper presents a probabilistic approach to model the problem of power supply voltage fluctuations. Error probability calculations are shown for some 90-nm technology digital circuits.The analysis here considered gives the timing violation error probability as a new design quality factor in front of conventional techniques that assume the full perfection of the circuit. The evaluation of the error bound can be useful for new design paradigms where retry and self-recoveringtechniques are being applied to the design of high performance processors. The method here described allows to evaluate the performance of these techniques by means of calculating the expected error probability in terms of power supply distribution quality.
Resumo:
Peer reviewed
Resumo:
In this paper, we investigate the average andoutage performance of spatial multiplexing multiple-input multiple-output (MIMO) systems with channel state information at both sides of the link. Such systems result, for example, from exploiting the channel eigenmodes in multiantenna systems. Dueto the complexity of obtaining the exact expression for the average bit error rate (BER) and the outage probability, we deriveapproximations in the high signal-to-noise ratio (SNR) regime assuming an uncorrelated Rayleigh flat-fading channel. Moreexactly, capitalizing on previous work by Wang and Giannakis, the average BER and outage probability versus SNR curves ofspatial multiplexing MIMO systems are characterized in terms of two key parameters: the array gain and the diversity gain. Finally, these results are applied to analyze the performance of a variety of linear MIMO transceiver designs available in the literature.
Resumo:
This paper deals with the goodness of the Gaussian assumption when designing second-order blind estimationmethods in the context of digital communications. The low- andhigh-signal-to-noise ratio (SNR) asymptotic performance of the maximum likelihood estimator—derived assuming Gaussiantransmitted symbols—is compared with the performance of the optimal second-order estimator, which exploits the actualdistribution of the discrete constellation. The asymptotic study concludes that the Gaussian assumption leads to the optimalsecond-order solution if the SNR is very low or if the symbols belong to a multilevel constellation such as quadrature-amplitudemodulation (QAM) or amplitude-phase-shift keying (APSK). On the other hand, the Gaussian assumption can yield importantlosses at high SNR if the transmitted symbols are drawn from a constant modulus constellation such as phase-shift keying (PSK)or continuous-phase modulations (CPM). These conclusions are illustrated for the problem of direction-of-arrival (DOA) estimation of multiple digitally-modulated signals.
Resumo:
This paper presents a Bayesian approach to the design of transmit prefiltering matrices in closed-loop schemes robust to channel estimation errors. The algorithms are derived for a multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system. Two different optimizationcriteria are analyzed: the minimization of the mean square error and the minimization of the bit error rate. In both cases, the transmitter design is based on the singular value decomposition (SVD) of the conditional mean of the channel response, given the channel estimate. The performance of the proposed algorithms is analyzed,and their relationship with existing algorithms is indicated. As withother previously proposed solutions, the minimum bit error rate algorithmconverges to the open-loop transmission scheme for very poor CSI estimates.
Resumo:
Many engineering problems that can be formulatedas constrained optimization problems result in solutionsgiven by a waterfilling structure; the classical example is thecapacity-achieving solution for a frequency-selective channel.For simple waterfilling solutions with a single waterlevel and asingle constraint (typically, a power constraint), some algorithmshave been proposed in the literature to compute the solutionsnumerically. However, some other optimization problems result insignificantly more complicated waterfilling solutions that includemultiple waterlevels and multiple constraints. For such cases, itmay still be possible to obtain practical algorithms to evaluate thesolutions numerically but only after a painstaking inspection ofthe specific waterfilling structure. In addition, a unified view ofthe different types of waterfilling solutions and the correspondingpractical algorithms is missing.The purpose of this paper is twofold. On the one hand, itoverviews the waterfilling results existing in the literature from aunified viewpoint. On the other hand, it bridges the gap betweena wide family of waterfilling solutions and their efficient implementationin practice; to be more precise, it provides a practicalalgorithm to evaluate numerically a general waterfilling solution,which includes the currently existing waterfilling solutions andothers that may possibly appear in future problems.
Resumo:
Broadcast transmission mode in ad hoc networks is critical to manage multihop routing or providing medium accesscontrol (MAC)-layer fairness. In this paper, it is shown that ahigher capacity to exchange information among neighbors may beobtained through a physical-MAC cross-layer design of the broadcastprotocol exploiting signal separation principles. Coherentdetection and separation of contending nodes is possible throughtraining sequences which are selected at random from a reducedset. Guidelines for the design of this set are derived for a lowimpact on the network performance and the receiver complexity.
A performance lower bound for quadratic timing recovery accounting for the symbol transition density
Resumo:
The symbol transition density in a digitally modulated signal affects the performance of practical synchronization schemes designed for timing recovery. This paper focuses on the derivation of simple performance limits for the estimation of the time delay of a noisy linearly modulated signal in the presence of various degrees of symbol correlation produced by the varioustransition densities in the symbol streams. The paper develops high- and low-signal-to-noise ratio (SNR) approximations of the so-called (Gaussian) unconditional Cramér–Rao bound (UCRB),as well as general expressions that are applicable in all ranges of SNR. The derived bounds are valid only for the class of quadratic, non-data-aided (NDA) timing recovery schemes. To illustrate the validity of the derived bounds, they are compared with the actual performance achieved by some well-known quadratic NDA timing recovery schemes. The impact of the symbol transitiondensity on the classical threshold effect present in NDA timing recovery schemes is also analyzed. Previous work on performancebounds for timing recovery from various authors is generalized and unified in this contribution.
Resumo:
This paper proposes a spatial filtering technique forthe reception of pilot-aided multirate multicode direct-sequencecode division multiple access (DS/CDMA) systems such as widebandCDMA (WCDMA). These systems introduce a code-multiplexedpilot sequence that can be used for the estimation of thefilter weights, but the presence of the traffic signal (transmittedat the same time as the pilot sequence) corrupts that estimationand degrades the performance of the filter significantly. This iscaused by the fact that although the traffic and pilot signals areusually designed to be orthogonal, the frequency selectivity of thechannel degrades this orthogonality at hte receiving end. Here,we propose a semi-blind technique that eliminates the self-noisecaused by the code-multiplexing of the pilot. We derive analyticallythe asymptotic performance of both the training-only andthe semi-blind techniques and compare them with the actual simulatedperformance. It is shown, both analytically and via simulation,that high gains can be achieved with respect to training-onlybasedtechniques.