930 resultados para >200 µm
Resumo:
This letter presents a novel lateral superjunction lateral insulated-gate bipolar transistor (LIGBT) in partial silicon-on-insulator (SOI) technology in 0.18-μm partial-SOI (PSOI) high-voltage (HV) process. For an n-type superjunction LIGBT, the p-layer in the superjunction drift region not only helps in achieving uniform electric field distribution but also contributes to the on-state current. The superjunction LIGBT successfully achieves a breakdown voltage (BV) of 210 V with an R dson of 765 mΩ ̇ mm 2. It exhibits half the value of specific on-state resistance R dson and three times higher saturation current (I dsat) for the same BV, compared to a comparable lateral superjunction laterally diffused metal-oxide-semiconductor fabricated in the same technology. It also performs well in higher temperature dc operation with 38.8% increase in R dson at 175°C, compared to the room temperature without any degradation in latch-up performance. To realize this device, it only requires one additional mask layer into X-FAB 0.18-μm PSOI HV process. © 2012 IEEE.
Resumo:
This paper evaluates the technique used to improve the latching characteristics of the 200 V n-type superjunction (SJ) lateral insulated-gate bipolar transistor (LIGBT) on a partial silicon-on-insulator. SJ IGBT devices are more prone to latch-up than standard IGBTs due to the presence of a strong pnp transistor with the p layer serving as an effective collector of holes. The initial SJ LIGBT design latches at about 23 V with a gate voltage of 5 V with a forward voltage drop (VON) of 2 V at 300 Acm2. The latch-up current density is 1100 Acm2. The latest SJ LIGBT design shows an increase in latch-up voltage close to 100 V without a significant penalty in VON. The latest design shows a latch-up current density of 1195 A cm2. The enhanced robustness against static latch-up leads to a better forward bias safe operating area. © 1963-2012 IEEE.
Resumo:
The lasing in an end-pumped gain guided index-antiguided (GG-IAG) Yb3+-doped silicate glass fiber with a 200 mu m diameter core is demonstrated. Laser beams with similar beam propagation factors M (2) and mode field diameters W (0) (> 160 mu m) were observed at the output end of the GG-IAG fibers under different pump powers, which indicated that single mode behavior and excellent beam quality were achieved during propagation. Furthermore, the laser amplifier characteristics in the present Yb3+-doped GG-IAG fiber were also evaluated.
Resumo:
报道了利用兰州重离子加速器国家实验室ECR离子源提供的高电荷态离子~(40)Ar~(10+)入射到Al和p型Si表面所产生的Al,Si,Ar原子的200~1000nm特征光谱的实验测量结果。结果表明,低速高电荷态离子与团体表面原子相互作用可有效地激发靶原子和靶离子的特征谱线,而且由于发射二次电子的无辐射退激与辐射光子退激过程的竞争,使得在p型Si表面上Ar原子的光谱强度总体大于在Al表面上的光谱强度。
Resumo:
The contribution of B meson decays to nonphotonic electrons, which are mainly produced by the semileptonic decays of heavy-flavor mesons, in p + p collisions at root s = 200 GeV has been measured using azimuthal correlations between nonphotonic electrons and hadrons. The extracted B decay contribution is approximately 50% at a transverse momentum of p(T) >= 5 GeV/c. These measurements constrain the nuclear modification factor for electrons from B and D meson decays. The result indicates that B meson production in heavy ion collisions is also suppressed at high p(T).