994 resultados para (wt%)
Resumo:
The mechanical properties of metals with bcc structure, such as niobium and its alloys, have changed significantly with the introduction of heavy interstitial elements. These interstitial elements (nitrogen, for example), present in the alloy, occupy octahedral sites and constitute an elastic dipole of tetragonal symmetry and might produce anelastic relaxation. This article presents the effect of nitrogen on the anelastic properties of Nb-1.0 wt% Zr alloys, measured by means of mechanical spectroscopy using a torsion pendulum. The results showed complex anelastic relaxation structures, which were resolved into their constituent peaks, representing each relaxation process. These processes are due to stress-induced ordering of the interstitial elements around the niobium and zirconium of the alloy.
Resumo:
The influence of additions of 2, 4, 6, 8, 10 and 12 wt.% Ag in the isothermal aging kinetics of the Cu-8 wt.% Al alloy was studied using microhardness measurements, differential scanning calorimetry, optical and scanning electron microscopy and X-ray diffractometry. The results indicate that the presence of silver is responsible for the shift of the equilibrium concentration to higher Al contents, allowing the formation of the gamma(1) phase (Al4Cu9) in this alloy. For Ag additions up to 6% the dominant kinetic process is Ag precipitation and for additions from 8 to 12% Ag the nucleation of the perlitic phase dominates. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The Ag precipitation and dissolution reactions in the Cu-3 wt.% Al-4 wt.% Ag alloy were studied using isothermal and non-isothermal analyses. The activation energy values, obtained for the Ag precipitation reaction indicated that, when the Kissinger, Ozawa and Johnson-MehI-Avrami methods are compared, the Kissinger method is the most appropriate. Although the Johnson-Mehl-Avrami equation often does not fit precipitation data, the energy values obtained for Ag precipitation kinetics are in agreement with what was experimentally observed. For the dissolution reaction of Ag precipitates the activation energy values obtained from the Kissinger and Ozawa methods are higher than that found in the literature for the Ag dissolution in Cu. This discrepancy seems to be related to the fact that the activation energy is influenced by the heating rate. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Thermal analysis and compression tests at room temperature have been carried out for Cu-10 wt.% Al and Cu-10 wt.% Al-10 wt.% Ag alloys samples. The results indicate that the decomposition reaction of the (beta(1)) parent phase is decreased suppressed and a martensite stabilization effect can be induced by Ag addition. The Cu-Al-Ag alloy shows some degree of shape memory capacity. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The reverse martensitic transformation in the Cu-10 wt%Al-6 wt%Ag alloy was studied by classical differential thermal analysis (IDTA), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The results indicated that the presence of Ag in the Cu-10%Al alloy is responsible for the separation of the competitive reactions that occur during the reverse martensitic transformation and is also associated to an increase in the disordering degree at high temperatures, when compared with alloys without Ag addition. (c) 2005 Springer Science + Business Media, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The influence of silver additions on the Cu-13 wt. pot. Al alloy hardness was studied for additions in the range 0 to 16 wt. pot Ag. The results indicated a pronounced hardness increase with the silver content and an influence of the quenching temperature. Data obtained from scanning electron microscopy indicated that the formation of silver-rich precipitates, wich change with the quenching temperature, seems to produce the changes on alloys hardness.
Resumo:
The mechanical properties of metals with bee structure, such as niobium and their alloys, are changed of a significant way by the introduction of heavy interstitial elements. These interstitial elements (oxygen, for example) present in the metallic matrix occupy octahedral sites and constitute an elastic dipole of tetragonal symmetry and might produce anelastic relaxation. Polycrystalline samples of Nb-0.3 wt.% Ti (Nb-Ti) alloy with oxygen in solid solution were analysed. The anelastic spectroscopy measurements had been made in a torsion pendulum, with frequencies in the Hz range, in a temperature range between 300 and 700 K. The results showed thermally activated relaxation structures were identified four relaxation process attributed to stress-induced ordering of single oxygen, nitrogen and carbon atoms around niobium and stress-induced ordering of single oxygen atoms around titanium atoms. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The influence of silver additions on the structure and phase transformation of the Cu-13 wt % Al alloy was studied by differential thermal analysis, X-ray diffraction, scanning electron microscopy and energy dispersive analysis of X-rays. The results indicate that the presence of silver modifies the phase-stability field, the transition temperature and the structure of the alloy. These effects are more pronounced for silver concentrations up to 8 wt %.
Resumo:
Metals and alloys containing solute atoms dissolved interstitially often show anelastic behavior due to a process know as stress-induced ordering. The application of mechanical spectroscopy measurements to diffusion studies in body-centered cubic metals has been extensively used in the last decades. However the kind of preferential occupation of interstitial solutes in body-centered cubic metals is still controversial. The anelastic properties of the Nb and Nb-1 wt% Zr polycrystalline alloys were determined by internal friction and oscillation frequency measurements using a torsion pendulum inverted performed between 300K and 650K, operating in a frequency oscillation in the hertz bandwidth. The interstitial diffusion coefficients of oxygen and nitrogen in Nb and Nb-1 wt% Zr samples were determined at two distinct conditions: (a) for low concentration of oxygen and (b) for high concentration of oxygen.
Resumo:
The martensite aging kinetics in the Cu-10 wt.%Al and Cu-10 wt.%Al-10 wt.%Ag alloys was studied using microhardness measurements, classical differential thermal analysis (DTA), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and in-situ high-temperature X-ray diffractometry (XRD). The results for the Cu-10%Al alloy indicated a process dominated by the martensite ordering assisted by migration of quenched-in vacancies and followed by the consumption of the α phase. For the Cu-10%Al-10%Ag alloy the dominant process is the consumption of the α phase associated with a decrease in the ordering degree of the martensitic phase. © 2007 Springer Science+Business Media, LLC.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)