956 resultados para weak approximation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propomos um novo método de migração em profundidade baseado na solução da equação da onda com densidade constante no domínio da freqüência. Uma aproximação de Padé complexa é usada para aproximar o operador de evolução aplicado na extrapolação do campo de ondas. Esse método reduz as imprecisões e instabilidades devido às ondas evanescentes e produz imagens com menos ruídos numéricos que aquelas obtidas usando-se a aproximação de Padé real para o operador exponencial, principalmente em meios com fortes variações de velocidades. Testes em dados de afastamento nulo do modelo de sal SEG/EAGE e nos dados de tiro comum 2-D Marmousi foram realizados. Os resultados obtidos mostram que o método de migração proposto consegue lidar com fortes variações laterais e também tem uma boa resposta para refletores com mergulhos íngremes. Os resultados foram comparados àqueles resultados obtidos com os métodos split-step Fourier (SSF), phase shift plus interpolarion (PSPI) e Fourier diferenças-finitas (FFD).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nesse trabalho, foram caracterizados, pela primeira vez, azulejos históricos portugueses do Centro Histórico de São Luís (CHSL) do Maranhão. A caracterização foi realizada através dos ensaios de microscopia ótica, difração de raios X (DRX) e análise química, visando ao uso dessa informação para a determinação das possíveis matérias-primas utilizadas na sua fabricação, bem como a provável temperatura de queima desses materiais. Os resultados mostraram que a microestrutura desses materiais é constituída por poros de tamanhos variados, apresentando incrustações de calcita e grãos de quartzo de tamanhos inferiores a 500 µm, distribuídos numa matriz de cor rosa-amarelo, onde foram identificadas, por DRX, as fases minerais calcita, gelhenita, wollastonita, quartzo e amorfo. A partir da informação obtida, é possível inferir que as matérias-primas originais estiveram constituídas, provavelmente, por mistura de argilas caoliníticas (Al2O3•2SiO,2•2H2O), ricas em carbonatos de cálcio e quartzo ou misturas de argilas caoliniticas, quartzo e calcita. Essas matérias-primas originais não atingiram a temperatura de cocção de 950ºC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A radial basis function network (RBFN) circuit for function approximation is presented. Simulation and experimental results show that the network has good approximation capabilities. The RBFN was a squared hyperbolic secant with three adjustable parameters amplitude, width and center. To test the network a sinusoidal and sine function,vas approximated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Function approximation is a very important task in environments where the computation has to be based on extracting information from data samples in real world processes. So, the development of new mathematical model is a very important activity to guarantee the evolution of the function approximation area. In this sense, we will present the Polynomials Powers of Sigmoid (PPS) as a linear neural network. In this paper, we will introduce one series of practical results for the Polynomials Powers of Sigmoid, where we will show some advantages of the use of the powers of sigmiod functions in relationship the traditional MLP-Backpropagation and Polynomials in functions approximation problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Física - FEG

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multicommodity flow (MF) problems have a wide variety of applications in areas such as VLSI circuit design, network design, etc., and are therefore very well studied. The fractional MF problems are polynomial time solvable while integer versions are NP-complete. However, exact algorithms to solve the fractional MF problems have high computational complexity. Therefore approximation algorithms to solve the fractional MF problems have been explored in the literature to reduce their computational complexity. Using these approximation algorithms and the randomized rounding technique, polynomial time approximation algorithms have been explored in the literature. In the design of high-speed networks, such as optical wavelength division multiplexing (WDM) networks, providing survivability carries great significance. Survivability is the ability of the network to recover from failures. It further increases the complexity of network design and presents network designers with more formidable challenges. In this work we formulate the survivable versions of the MF problems. We build approximation algorithms for the survivable multicommodity flow (SMF) problems based on the framework of the approximation algorithms for the MF problems presented in [1] and [2]. We discuss applications of the SMF problems to solve survivable routing in capacitated networks.