853 resultados para vapor recovery
Resumo:
Brain-derived neurotrophic factor (BDNF) has been proposed as a biomarker of schizophrenia and, more specifically, as a biomarker of cognitive recovery. Evidence collected in this review indicates that BDNF is relevant in the pathophysiology of schizophrenia and could play a role as a marker of clinical response. BDNF has been shown to play a positive role as a marker in antipsychotic treatment, and it has been demonstrated that typical antipsychotics decrease BDNF levels while atypical antipsychotics maintain or increase serum BDNF levels. Furthermore, BDNF levels have been associated with severe cognitive impairments in patients with schizophrenia. Consequently, BDNF has been proposed as a candidate target of strategies to aid the cognitive recovery process. There is some evidence suggesting that BDNF could be mediating neurobiological processes underlying cognitive recovery. Thus, serum BDNF levels seem to be involved in some synaptic plasticity and neurotransmission processes. Additionally, serum BDNF levels significantly increased in schizophrenia subjects after neuroplasticity-based cognitive training. If positive replications of those findings are published in the future then serum BDNF levels could be definitely postulated as a peripheral biomarker for the effects of intensive cognitive training or any sort of cognitive recovery in schizophrenia. All in all, the current consideration of BDNF as a biomarker of cognitive recovery in schizophrenia is promising but still premature.
Resumo:
Several extraction procedures are described for the determination of exchangeable and fixed ammonium, nitrate + nitrite, total exchangeable nitrogen and total nitrogen in certified reference soils and petroleum reservoir rock samples by steam distillation and indophenol method. After improvement of the original distillation system, an increase in worker safety, a reduction in time consumption, a decrease of 73% in blank value and an analysis without ammonia loss, which could possibly occur, were achieved. The precision (RSD < 8%, n = 3) and the detection limit (9 mg kg-1 NH4+-N) are better than those of published procedures.
Resumo:
Engineering and pricing of large recovery boiler were studied in this work. Engineering was carried out with Anita 4.2 which is an engineering program of Andritz. Key initial values were chosen with previous studies. Primary target of this work was to find out the consequences that furnace dimensions and furnace screen vertical part has to boiler pricing. Boilers that were engineered had different rate of furnace width and depth and different heat transfer plate count. Boiler balances were invariable. Boilers with different vertical screen construction were also calculated. First variation was boiler with vertical screen up to furnace roof. Other variation was to connect vertical screen to Pre-boiler generating bank inlet tubes. Total prices were calculated to engineered boilers. Pricing was sort out to heat transfers, high pressure pipes, steel structures, auxiliary equipments and civil/structural costs. This study did not notice parts of the boiler which costs do not vary with the construction of the boiler. Heat transfers had the largest share of costs. Boiler building had the most significant differences between the boilers. Furnace screen had also significant role especially to costs of the boiler building.
Resumo:
The quality of the gasoline utilized for fueling internal combustion engines with spark ignition is directly affected by the gasoline's properties. Thus, the fuel's properties must be in perfect equilibrium to allow the engine to perform optimally, not only insofar as fuel consumption is concerned, but also in order to reduce the emission of pollutants. Vapor pressure and vaporization enthalpy are important properties of a gasoline determining the fuel's behavior under different operating conditions in internal combustion engines. The study reported here involved the development of a device to determine the vapor pressure and the vaporization enthalpy of formulations containing volumes of 5, 15 and 25% of ethanol in four base gasolines (G1, G2, G3 and G4). The chemical composition of these gasolines was determined using a gas chromatographer equipped with a flame ionization detector (FID).
Resumo:
Most modern passenger aeroplanes use air cycle cooling. A high-speed air cycle is a reliable and light option, but not very efficient. This thesis presents research work done to design a novel vapour cooling cycle for aeroplanes. Due to advancements in high-speed permanent magnet motors, the vapour cycle is seen as a competitive option for the air cycle in aeroplanes. The aerospace industry places tighter demands on the weight, reliability and environmental effects of the machinery than those met by conventional chillers, and thus modifications to conventional design are needed. The thesis is divided into four parts: the initial screening of the working fluid, 1-D design and performance values of the compressor, 1-D off-design value predictions of the compressor and the 3-D design of the compressor. The R245fa was selected as the working fluid based the study. The off-design range of the compressor was predicted to be wide and suitable for the application. The air-conditioning system developed is considerably smaller than previous designs using centrifugal compressors.
Resumo:
Natural or modified chondroitin sulfate was incorporated in to polymethacrylate to obtain isolated films. The addition of polysaccharide to synthetic polymers occurred at different rates. Isolated films were micro and macroscopically characterized and swelling index and water vapor transmission were determined. Results indicated changed transparency and flexibility, coupled to their dependence on increase in polysaccharide concentration. A similar occurrence was reported in the permeability to water vapor and swelling degree. Films composed of modified chondroitin sulfate, 90:10 concentration, showed hydration levels, permeability and morphological properties which allow them to be applied as excipients in the development of new drug delivery systems.
Resumo:
Cu/Ni/gamma-Al2O3 catalysts were prepared by an impregnation method with 2.5 or 5% wt of copper and 5 or 15% wt of nickel and applied in ethanol steam reforming. The catalysts were characterized by atomic absorption spectrophotometry, X-ray diffraction, temperature programmed reduction with hydrogen and nitrogen adsorption. The samples showed low crystallinity, with the presence of CuO and NiO, both as crystallites and in dispersed phase, as well as of NiO-Al2O3. The catalytic tests carried out at 400 ºC, with a 3:1 water/ethanol molar ratio, indicated the 5Cu/5Ni/Al2O3 catalyst as the most active for hydrogen production, with a hydrogen yield of 77% and ethanol conversion of 98%.
Resumo:
Previous results concerning radiative emission under laser irradiation of silicon nanopowder are reinterpreted in terms of thermal emission. A model is developed that considers the particles in the powder as independent, so under vacuum the only dissipation mechanism is thermal radiation. The supralinear dependence observed between the intensity of the emitted radiation and laser power is predicted by the model, as is the exponential quenching when the gas pressure around the sample increases. The analysis allows us to determine the sample temperature. The local heating of the sample has been assessed independently by the position of the transverse optical Raman mode. Finally, it is suggested that the photoluminescence observed in porous silicon and similar materials could, in some cases, be blackbody radiation
Resumo:
The quenching of the photoluminescence of Si nanopowder grown by plasma-enhanced chemical vapor deposition due to pressure was measured for various gases ( H2, O2, N2, He, Ne, Ar, and Kr) and at different temperatures. The characteristic pressure, P0, of the general dependence I(P)=I0exp(-P/P0) is gas and temperature dependent. However, when the number of gas collisions is taken as the variable instead of pressure, then the quenching is the same within a gas family (mono- or diatomic) and it is temperature independent. So it is concluded that the effect depends on the number of gas collisions irrespective of the nature of the gas or its temperature
Resumo:
Adsorption of heavy metal cations by activated carbon is dependent on the capacity of the material in promoting adsorption and the time needed to reach equilibrium. Carbon samples were previously activated either by phosphoric acid treatment at 400 ºC or by steam at 800 ºC. The results of Pb(II) adsorption by these activated carbons have shown that equilibrium was typically reached within the first 5 min of contact between carbon and metal solution, with a maximum adsorption capacity higher than 69 mg g-1 for the vapor-activated sample. Temperature influences the sorption capacity, which corresponds to an endothermic process. Lead(II) retention is more pronounced at high temperature and low pH.
Resumo:
Liquid-liquid extraction is a mass transfer process for recovering the desired components from the liquid streams by contacting it to non-soluble liquid solvent. Literature part of this thesis deals with theory of the liquid-liquid extraction and the main steps of the extraction process design. The experimental part of this thesis investigates the extraction of organic acids from aqueous solution. The aim was to find the optimal solvent for recovering the organic acids from aqueous solutions. The other objective was to test the selected solvent in pilot scale with packed column and compare the effectiveness of the structured and the random packing, the effect of dispersed phase selection and the effect of packing material wettability properties. Experiments showed that selected solvent works well with dilute organic acid solutions. The random packing proved to be more efficient than the structured packing due to higher hold-up of the dispersed phase. Dispersing the phase that is present in larger volume proved to more efficient. With the random packing the material that was wetted by the dispersed phase was more efficient due to higher hold-up of the dispersed phase. According the literature, the behavior is usually opposite.
Resumo:
The caffeine solubility in supercritical CO2 was studied by assessing the effects of pressure and temperature on the extraction of green coffee oil (GCO). The Peng-Robinson¹ equation of state was used to correlate the solubility of caffeine with a thermodynamic model and two mixing rules were evaluated: the classical mixing rule of van der Waals with two adjustable parameters (PR-VDW) and a density dependent one, proposed by Mohamed and Holder² with two (PR-MH, two parameters adjusted to the attractive term) and three (PR-MH3 two parameters adjusted to the attractive and one to the repulsive term) adjustable parameters. The best results were obtained with the mixing rule of Mohamed and Holder² with three parameters.
Resumo:
A variety of language disturbances including aphasia have been described after subcortical stroke but less is known about the factors that influence the long-term recovery of stroke-induced language dysfunction. We prospectively examined the role of the affected hemisphere and the lesion site in the occurrence and recovery of language deficits in nonthalamic subcortical stroke. Forty patients with unilateral basal gangliastroke underwent language assessment within 1 week, 3 months and 1 year after stroke. Disturbances in at least one language domain were observed in 35 patients during the first week post stroke including aphasia diagnosed in 11 patients. Importantly, the appearance of deficits after stroke onset and the improvement of language function were not determined by the site of subcortical lesion, but instead were critically influenced by the affected hemisphere. In fact, the language impairments following left and right basal ganglia stroke mirrored the language dysfunction observed after cortical lesions in the same hemisphere. A significant overall language improvement was observed at 3 months after stroke, although residual deficits in languageexecutive function were the most commonly observed impairment at 1 year follow-up. Although a substantial improvement of language function can be expected after nonthalamic subcortical stroke, our findings suggest that language recovery may not be fully achieved at 1 year post
Resumo:
Fixed-bed column studies were undertaken to evaluate the performance of a commercial Brazilian activated carbon in removing Pb(II) from aqueous environment. Breakthrough points were found out for the metal adsorption by varying different operating parameters like feed concentrations (10 and 20 mg L-1) and bed heights (0.5, 1.5 and 2.8 cm). A good agreement was observed between the experimental data and the values predicted by the bed depth service time (BDST) model. Regeneration of the exhausted columns was possible with HCl, and the adsorption capacity was maintained after three adsorption-desorption cycles.