905 resultados para tin
Resumo:
The chemically reversible solid−solid phase transformation of a TCNQ-modified glassy carbon, indium tin oxide, or metal electrode into Co\[TCNQ]2(H2O)2 material in the presence of Co2+(aq) containing electrolytes has been induced and monitored electrochemically. Voltammetric data reveal that the TCNQ/Co\[TCNQ]2(H2O)2 interconversion process is independent of electrode material and identity of cobalt electrolyte anion. However, a marked dependence on electrolyte concentration, scan rate, and method of electrode modification (drop casting or mechanical attachment) is found. Cyclic voltammetric and double potential step chronoamperometric measurements confirm that formation of Co\[TCNQ]2(H2O)2 occurs through a rate-determining nucleation and growth process that initially involves incorporation of Co2+(aq) ions into the reduced TCNQ crystal lattice at the TCNQ|electrode|electrolyte interface. Similarly, the reverse (oxidation) process, which involves transformation of solid Co\[TCNQ]2(H2O)2 back to parent TCNQ crystals, also is controlled by nucleation−growth kinetics. The overall chemically reversible process that represents this transformation is described by the reaction: 2TCNQ0(s) + 2e- + Co2+(aq) + 2H2O \[Co(TCNQ)2(H2O)2](s). Ex situ SEM images illustrated that this reversible TCNQ/Co\[TCNQ]2(H2O)2 conversion process is accompanied by drastic size and morphology changes in the parent solid TCNQ. In addition, different sizes of needle-shaped nanorod/nanowire crystals of Co\[TCNQ]2(H2O)2 are formed depending on the method of surface immobilization.
Resumo:
In situ atomic force microscopy (AFM) allows images from the upper face and sides of TCNQ crystals to be monitored during the course of the electrochemical solid–solid state conversion of 50 × 50 μm2 three-dimensional drop cast crystals of TCNQ to CuTCNQ or M[TCNQ]2(H2O)2 (M = Co, Ni). Ex situ images obtained by scanning electron microscopy (SEM) also allow the bottom face of the TCNQ crystals, in contact with the indium tin oxide or gold electrode surface and aqueous metal electrolyte solution, to be examined. Results show that by carefully controlling the reaction conditions, nearly mono-dispersed, rod-like phase I CuTCNQ or M[TCNQ]2(H2O)2 can be achieved on all faces. However, CuTCNQ has two different phases, and the transformation of rod-like phase 1 to rhombic-like phase 2 achieved under conditions of cyclic voltammetry was monitored in situ by AFM. The similarity of in situ AFM results with ex situ SEM studies accomplished previously implies that the morphology of the samples remains unchanged when the solvent environment is removed. In the process of crystal transformation, the triple phase solid∣electrode∣electrolyte junction is confirmed to be the initial nucleation site. Raman spectra and AFM images suggest that 100% interconversion is not always achieved, even after extended electrolysis of large 50 × 50 μm2 TCNQ crystals.
Resumo:
Electrochemical processes in mesoporous TiO2-Nafion thin films deposited on indium tin oxide (ITO) electrodes are inherently complex and affected by capacitance, Ohmic iR-drop, RC-time constant phenomena, and by potential and pH-dependent conductivity. In this study, large-amplitude sinusoidally modulated voltammetry (LASMV) is employed to provide access to almost purely Faradaic-based current data from second harmonic components, as well as capacitance and potential domain information from the fundamental harmonic for mesoporous TiO2-Nafion film electrodes. The LASMV response has been investigated with and without an immobilized one-electron redox system, ferrocenylmethyltrimethylammonium+. Results clearly demonstrate that the electron transfer associated with the immobilized ferrocene derivative follows two independent pathways i) electron hopping within the Nafion network and ii) conduction through the TiO2 backbone. The pH effect on the voltammetric response for the TiO2 reduction pathway (ii) can be clearly identified in the 2nd harmonic LASMV response with the diffusion controlled ferrocene response (i) acting as a pH independent reference. Application of second harmonic data derived from LASMV measurement, because of the minimal contribution from capacitance currents, may lead to reference-free pH sensing with systems like that found for ferrocene derivatives.
Resumo:
In this work a simple approach to the creation of highly dispersed electrocatalytically active silver microstructured dendrites on indium tin oxide in the absence of any surface modification or surfactant is presented. It is found that the addition of low concentrations of supporting electrolyte to the AgNO3 solution dramatically influences the morphology of electrodeposited silver which is independent of both the anion and the cation employed. The silver dendrites are characterized by SEM, XRD, XPS as well as by cyclic voltammetry under alkaline conditions. It is found that the surface oxide formation and removal processes are significantly influenced by the microstructured morphology of the silver electrodeposits compared to a smooth macrosized silver electrode. The facile formation of dendritic silver microstructures is also shown to be beneficial for the electrocatalytic oxidation of both formaldehyde and hydrazine and oxygen reduction. The formation of a continuous film of dendritic silver is also investigated for its SERS activity where the connectivity between the individual dendrites is found to be particularly important.
Resumo:
We demonstrate that a three dimensional (3D) crystalline tungsten trioxide (WO3) nanoporous network, directly grown on a transparent conductive oxide (TCO) substrate, is a suitable working electrode material for high performance electrochromic devices. This nanostructure, with achievable thicknesses of up to 2 μm, is prepared at room temperature by the electrochemical anodization of a RF-sputtered tungsten film deposited on a fluoride doped tin oxide (FTO) conductive glass, under low applied anodic voltages and mild chemical dissolution conditions. For the crystalline nanoporous network with thicknesses ranging from 0.6 to 1 μm, impressive coloration efficiencies of up to 141.5 cm2 C−1 are achieved by applying a low coloration voltage of −0.25 V. It is also observed that there is no significant degradation of the electrochromic properties of the porous film after 2000 continuous coloration–bleaching cycles. The remarkable electrochromic characteristics of this crystalline and nanoporous WO3 are mainly ascribed to the combination of a large surface area, facilitating increased intercalation of protons, as well as excellent continuous and directional paths for charge transfer and proton migration in the highly crystalline material.
Resumo:
α- and β-Phase MoO3 are synthesized using an electrodeposition method on fluorine-doped tin oxide (FTO) glass substrates from sodium-molybdate (Na2MoO4) solutions. We show that it is possible to obtain both α- and β-MoO3 by manipulating the cyclic voltammetry (CV) parameters during electrodeposition. Raman spectroscopy, X-ray diffraction, and scanning electron microscopy indicate that the applied potential range and sweep rate are strongly influential on the phase obtained and the surface morphology of the electrodeposited thin films. Gasochromic measurements were carried out on the annealed samples by exposing them to H2 gas. It was revealed that α-MoO3 thin films provided better response to H2 interaction than β-MoO3 films did. Additionally, porous films provided significantly larger responses than smooth films.
Resumo:
This paper begins by identifying three main reasons why many of the more STEM-Talented students at our universities do not consider enrolling in STEM teacher education programs. Then based on a review of the literature, a framework for addressing this dilemma is presented and discussed. This framework consists of a set of three principles together with eleven strategies for the operationalization of these principles. During the presentation of the framework, the roles of governments and of universities at the institutional, faculty/division and departmental levels in the operationalization of the framework are examined.
Resumo:
This paper reports on a Professional Learning Programme undertaken by primary school teachers in China that aimed to facilitate the development of ‘adaptive expertise’ in using technology to facilitate innovative science teaching and learning such as that envisaged by the Chinese Ministry of Education’s (2010–2020) education reforms. The study found that the participants made substantial progress towards the development of adaptive expertise manifested not only by advances in the participants’ repertoires of pedagogical content knowledge but also in changes to their levels of confidence and identities as teachers. By the end of the programme, the participants had coalesced into a professional learning community that readily engaged in the sharing, peer review, reuse and adaption, and collaborative design of innovative science learning and assessment activities. The findings from the study indicate that those engaged in the development of Professional Learning Programmes in Asia-Pacific nations need to take cognizance of certain cultural factors and traditions idiosyncratic to the educational systems. This is reflected in the amended set of principles to inform the design and implementation of professional learning programmes presented in the concluding sections of the paper.
Resumo:
The Earth and its peoples are facing great challenges. As a species, humans are over-consuming the Earth’s resources and compromising the capacity of both natural and social systems to function in healthy and sustainable ways. Education at all levels and in all contexts, has a key role in helping societies move to more sustainable ways of living. Two areas in need of catch-up in relation to Education for Sustainable Development (ESD) are early childhood education and teacher education. Another area of challenge for ESD is the way it is currently oriented. To date, a great deal of emphasis has been placed on scientific and technological solutions to sustainability issues. This has led to an emphasis on STEM education as education’s main way of addressing sustainability. However, in this paper it is argued that sustainably is primarily a social issue that requires interdisciplinary education approaches. STEM approaches to ESD - emphasising knowledge construction and problem-solving - cannot, on their own, deal effectively with attitudes, values and actions towards more sustainable ways of living. In China and Australia, there are already policies, frameworks, guidelines and initiatives, such as Green Schools and Sustainable Schools that support such forms of ESD. STEM educators need to reach out to social scientists and social educators in order to more fully engage with activist and collaborative educational responses that equip learners with the knowledge, dispositions and capacities to ‘make a difference’.
Resumo:
Chemically synthesized AgTCNQ exists in two forms that differ in their morphologies (needles and microcrystals) and colors (red and blue). It is now shown that both forms exhibit essentially indistinguishable X-ray diffraction, spectroscopic, and thermochemical data, implying that they are not separate phases, as implied in some literature. Electrochemical reduction of TCNQ((MeCN)) in the presence of Ag+((MeCN)) generates both red and blue AgTCNQ. On glassy carbon, platinum, or indium tin oxide electrodes and at relatively positive deposition potentials, slow growth of high aspect ratio, red needle AgTCNQ crystals occurs. After longer times and at more negative deposition potentials, blue microcrystalline AgTCNQ thin films are favored. Blue AgTCNQ is postulated to be generated via reduction of a Ag+\[(TCNQ(center dot-))(TCNQ)]((MeCN)) intermediate. At even more negative potentials, Ag-(metal) formation inhibits further growth of AgTCNQ. On a gold electrode, Ag-(metal)) deposition occurs at more positive potentials than on the other electrode materials examined. However, surface plasmon resonance data indicate (hat a small potential region is available between the stripping of Ag-(metal)) and the oxidation of TCNQ(center dot-)(MeCN) back to TCNQ(MeCN) where AgTCNQ may form. AgTCNQ in both the red and blue forms also can be prepared electrochemically on a TCNQ((s)) modified electrode in -0.1 M AgNO3(aq) where deposition of Ag(m,,,I) onto the TCNQ((s)) crystals allows a charge transfer process to occur. However, the morphology formed in this solid-solid phase transformation is more difficult to control.
Resumo:
This paper reports and discusses a contentious result from an Australia-wide study of the influences on students' decisions about taking senior science subjects. As part of the Choosing Science study (Lyons and Quinn 2010) 3759 Year 10 students were asked to indicate which stage of their schooling (lower primary, upper primary, lower secondary, middle secondary) they had most enjoyed learning science. Crosstabulations of responses revealed that around 78% of students indicated that they had enjoyed learning science more in secondary than in primary school, and 55% enjoyed it the most during Years 9 and 10. The perception that school science was more enjoyable in high school was also found among students who did not intend taking science in Year 11, though to a lesser extent. These findings are unexpected and significant, challenging the prevailing view that enjoyment of school science steadily declines after primary school. The paper elaborates on the findings and suggests that the different conclusions arrived at by studies in this field may be due to the different methodologies employed.
Resumo:
Titanium oxide films with trilayer structure grown on fluorine doped tin oxide substrate were prepared from one-step hydrothermal process. The trilayer structure consists of microflowers, nanorod array and compact nanoparticulates, which is expected to possess the merits of good light harvesting, a high electron transport rate, while avoiding the issues of electron shunting. The photovoltaic performance was comprehensively studied and a 60% enhancement in short circuit photocurrent density was found from microflowers contribution as a light scattering layer. This unique trilayer structure exhibits great potential application in future dye-sensitized solar cells.
Resumo:
This paper reports on the initial phase of a Professional Learning Program (PLP) undertaken by 100 primary school teachers in China that aimed to facilitate the development of adaptive expertise in using technology to facilitate innovative science teaching and learning such as that envisaged by the Chinese Ministry of Education’s (2010-2020) education reforms. Key principles derived from literature about professional learning and scaffolding of learning informed the design of the PLP. The analysis of data revealed that the participants had made substantial progress towards the development of adaptive expertise. This was manifested not only by advances in the participants’ repertoires of Subject Matter Knowledge and Pedagogical Content Knowledge but also in changes to their levels of confidence and identities as teachers. By the end of the initial phase of the PLP, the participants had coalesced into a professional learning community that readily engaged in the sharing, peer review, reuse and adaption, and collaborative design of innovative science learning and assessment activities. The findings from the study indicate that those engaged in the development of PLPs for teachers in China need to take cognizance of certain cultural factors and traditions idiosyncratic to the Chinese educational system. A set of revised principles is then presented to inform the future design and implementation of PLPs for teachers in China.
Resumo:
Effective control of room-temperature electroluminescence of n-ZnMgO/p-GaN light-emitting diodes (LEDs) over both emission intensity and wavelength is demonstrated. With varied Mg concentration, the intensity of LEDs in the near-ultraviolet region is increased due to the effective radiative recombination in the ZnMgO layer. Furthermore, the emission wavelength is shifted to the green/yellow spectral region by employing an indium-tin-oxide thin film as the dopant source, where thermally activated indium diffusion creates extra deep defect levels for carrier recombination. These results clearly demonstrate the effectiveness of controlled metal incorporation in achieving high energy efficiency and spectral tunability of the n-ZnMgO/p-GaN LED devices.
Resumo:
Ultrathin hematite (α-Fe2O3) film deposited on a TiO2 underlayer as a photoanode for photoelectrochemical water splitting was described. The TiO2 underlayer was coated on conductive fluorine-doped tin oxide (FTO) glass by spin coating. The hematite films were formed layer-by-layer by repeating the separated two-phase hydrolysis-solvothermal reaction of iron(III) acetylacetonate and aqueous ammonia. A photocurrent density of 0.683 mA cm−2 at +1.5 V vs. RHE (reversible hydrogen electrode) was obtained under visible light (>420 nm, 100 mW cm−2) illumination. The TiO2 underlayer plays an important role in the formation of hematite film, acting as an intermediary to alleviate the dead layer effect and as a support of large surface areas to coat greater amounts of Fe2O3. The as-prepared photoanodes are notably stable and highly efficient for photoelectrochemical water splitting under visible light. This study provides a facile synthesis process for the controlled production of highly active ultrathin hematite film and a simple route for photocurrent enhancement using several photoanodes in tandem.