963 resultados para synthetic small diameter vascular graft
Resumo:
BACKGROUND Drug eluting stents for the treatment of small vessel coronary artery disease have traditionally yielded inferior clinical outcomes compared to the use of DES in large vessels. The benefit of the second-generation Resolute zotarolimus-eluting stent (R-ZES) in small vessels was examined. METHODS Two-year clinical outcomes from five combined R-ZES studies were compared between patients with small (reference vessel diameter [RVD] ≤2.5 mm; n = 1,956) and large (RVD >2.5 mm; n = 3174) vessels. RESULTS Despite a higher incidence of comorbidities in the small vessel group, there was no significant difference in target lesion failure (TLF) (10.1% vs. 8.7%; P = 0.54) at 2 years. When the subgroup of patients with diabetes was examined (n = 1,553) there was no significant difference in 2-year TLF in small compared to large vessels (11.2% vs. 11.1%; P = 0.17). Similarly, within the small vessel cohort, no significant difference was seen regarding TLF at 2 years between people with and without diabetes (11.2% vs 9.6%; P = 0.28). CONCLUSION When used for the treatment of small vessels, the R-ZES appears to provide acceptable clinical results at 2 years when compared to its performance in large vessels.
Resumo:
OBJECTIVES To report the mid-term results of aortic root replacement using a self-assembled biological composite graft, consisting of a vascular tube graft and a stented tissue valve. METHODS Between January 2005 and December 2011, 201 consecutive patients [median age 66 (interquartile range, IQR, 55-77) years, 31 female patients (15.4%), median logistic EuroSCORE 10 (IQR 6.8-23.2)] underwent aortic root replacement using a stented tissue valve for the following indications: annulo-aortic ectasia or ascending aortic aneurysm with aortic valve disease in 162 (76.8%) patients, active infective endocarditis in 18 (9.0%) and acute aortic dissection Stanford type A in 21 (10.4%). All patients underwent clinical and echocardiographic follow-up. We analysed survival and valve-related events. RESULTS The overall in-hospital mortality rate was 4.5%. One- and 5-year cardiac-related mortality rates were 3 and 6%, and overall survival was 95 ± 1.5 and 75 ± 3.6%, respectively. The rate of freedom from structural valve failure was 99% and 97 ± 0.4% at the 1- and 5-year follow-up, respectively. The incidence rates of prosthetic valve endocarditis were 3 and 4%, respectively. During a median follow-up of 28 (IQR 14-51) months, only 2 (1%) patients required valve-related redo surgery due to prosthetic valvular endocarditis and none suffered from thromboembolic events. One percent of patients showed structural valve deterioration without any clinical symptoms; none of the patients suffered greater than mild aortic regurgitation. CONCLUSIONS Aortic root replacement using a self-assembled biological composite graft is an interesting option. Haemodynamic results are excellent, with freedom from structured valve failure. Need for reoperation is extremely low, but long-term results are necessary to prove the durability of this concept.
Resumo:
BACKGROUND AIMS Stem cells participate in vascular regeneration following critical ischemia. However, their angiogenic and remodeling properties, as well as their role in ischemia-related endothelial leukocyte activation, need to be further elucidated. Herein, we investigated the effect of bone marrow-derived mesenchymal stromal cells (BM-MSCs) in a critically ischemic murine skin flap model. METHODS Groups received either 1 × 10(5), 5 × 10(5), or 1 × 10(6) BM-MSCs or cell-free conditioned medium (CM). Controls received sodium chloride. Intravital fluorescence microscopy was performed for morphological and quantitative assessment of micro-hemodynamic parameters over 12 days. RESULTS Tortuosity and diameter of conduit-arterioles were pronounced in the MSC groups (P < 0.01), whereas vasodilation was shifted to the end arteriolar level in the CM group (P < 0.01). These effects were accompanied by angiopoietin-2 expression. Functional capillary density and red blood cell velocity were enhanced in all treatment groups (P < 0.01). Although a significant reduction of rolling and sticking leukocytes was observed in the MSC groups with a reduction of diameter in postcapillary venules (P < 0.01), animals receiving CM exhibited a leukocyte-endothelium interaction similar to controls. This correlated with leukocyte common antigen expression in tissue sections (P < 0.01) and p38 mitogen-activated protein kinase expression from tissue samples. Cytokine analysis from BM-MSC culture medium revealed a 50% reduction of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-12, tumor necrosis factor-α, interferon-γ) and chemokines (keratinocyte chemoattractant, granulocyte colony-stimulating factor) under hypoxic conditions. DISCUSSION We demonstrated positive effects of BM-MSCs on vascular regeneration and modulation of endothelial leukocyte adhesion in critical ischemic skin. The improvements after MSC application were dose-dependent and superior to the use of CM alone.
Resumo:
End caps are intended to prevent nail migration (push-out) in elastic stable intramedullary nailing. The aim of this study was to investigate the force at failure with and without end caps, and whether different insertion angles of nails and end caps would alter that force at failure. Simulated oblique fractures of the diaphysis were created in 15 artificial paediatric femurs. Titanium Elastic Nails with end caps were inserted at angles of 45°, 55° and 65° in five specimens for each angle to create three study groups. Biomechanical testing was performed with axial compression until failure. An identical fracture was created in four small adult cadaveric femurs harvested from two donors (both female, aged 81 and 85 years, height 149 cm and 156 cm, respectively). All femurs were tested without and subsequently with end caps inserted at 45°. In the artificial femurs, maximum force was not significantly different between the three groups (p = 0.613). Push-out force was significantly higher in the cadaveric specimens with the use of end caps by an up to sixfold load increase (830 N, standard deviation (SD) 280 vs 150 N, SD 120, respectively; p = 0.007). These results indicate that the nail and end cap insertion angle can be varied within 20° without altering construct stability and that the risk of elastic stable intramedullary nailing push-out can be effectively reduced by the use of end caps.
Resumo:
Treatment allocation by epidermal growth factor receptor mutation status is a new standard in patients with metastatic nonesmall-cell lung cancer. Yet, relatively few modern chemotherapy trials were conducted in patients characterized by epidermal growth factor receptor wild type. We describe the results of a multicenter phase II trial, testing in parallel 2 novel combination therapies, predefined molecular markers, and tumor rebiopsy at progression. Objective: The goal was to demonstrate that tailored therapy, according to tumor histology and epidermal growth factor receptor (EGFR) mutation status, and the introduction of novel drug combinations in the treatment of advanced nonesmall-cell lung cancer are promising for further investigation. Methods: We conducted a multicenter phase II trial with mandatory EGFR testing and 2 strata. Patients with EGFR wild type received 4 cycles of bevacizumab, pemetrexed, and cisplatin, followed by maintenance with bevacizumab and pemetrexed until progression. Patients with EGFR mutations received bevacizumab and erlotinib until progression. Patients had computed tomography scans every 6 weeks and repeat biopsy at progression. The primary end point was progression-free survival (PFS) ≥ 35% at 6 months in stratum EGFR wild type; 77 patients were required to reach a power of 90% with an alpha of 5%. Secondary end points were median PFS, overall survival, best overall response rate (ORR), and tolerability. Further biomarkers and biopsy at progression were also evaluated. Results: A total of 77 evaluable patients with EGFR wild type received an average of 9 cycles (range, 1-25). PFS at 6 months was 45.5%, median PFS was 6.9 months, overall survival was 12.1 months, and ORR was 62%. Kirsten rat sarcoma oncogene mutations and circulating vascular endothelial growth factor negatively correlated with survival, but thymidylate synthase expression did not. A total of 20 patients with EGFR mutations received an average of 16.
Resumo:
INTRODUCTION Diagnostic tools to show emboli reliably and protection techniques against embolization when employing stent retrievers are necessary to improve endovascular stroke therapy. The aim of the present study was to investigate iatrogenic emboli using susceptibility-weighted imaging (SWI) in an open series of patients who had been treated with stent retriever thrombectomy using emboli protection techniques. METHODS Patients with anterior circulation stroke examined with MRI before and after stent retriever thrombectomy were assessed for iatrogenic embolic events. Thrombectomy was performed in flow arrest and under aspiration using a balloon-mounted guiding catheter, a distal access catheter, or both. RESULTS In 13 of 57 patients (22.8 %) post-interventional SWI sequences detected 16 microemboli. Three of them were associated with small ischemic lesions on diffusion-weighted imaging (DWI). None of the microemboli were located in a new vascular territory, none showed clinical signs, and all 13 patients have been rated as Thrombolysis in Cerebral Infarction (TICI) 2b (n = 3) or 3 (n = 10). Retrospective reevaluation of the digital subtraction angiography (DSA) detected discrete flow stagnation nearby the iatrogenic microemboli in four patients with a positive persistent collateral sign in one. CONCLUSION Our study demonstrates two things: First, SWI seems to be more sensitive to detect emboli than DWI and DSA and, second, proximal or distal protected stent retriever thrombectomy seems to prevent iatrogenic embolization into new vascular territories during retraction of the thrombus, but not downstream during mobilization of the thrombus. Both techniques should be investigated and refined further.
Resumo:
The implementation of new surgical techniques offers chances but carries risks. Usually, several years pass before a critical appraisal and a balanced opinion of a new treatment method are available and rely on the evidence from the literature and expert's opinion. The frozen elephant trunk (FET) technique has been increasingly used to treat complex pathologies of the aortic arch and the descending aorta, but there still is an ongoing discussion within the surgical community about the optimal indications. This paper represents a common effort of the Vascular Domain of EACTS together with several surgeons with particular expertise in aortic surgery, and summarizes the current knowledge and the state of the art about the FET technique. The majority of the information about the FET technique has been extracted from 97 focused publications already available in the PubMed database (cohort studies, case reports, reviews, small series, meta-analyses and best evidence topics) published in English.
Resumo:
In Xenopus oocytes in vitro transcribed mouse U7 RNA is assembled into small nuclear ribonucleoproteins (snRNPs) that are functional in histone RNA 3' processing. If the special Sm binding site of U7 (AAUUUGUCUAG, U7 Sm WT) is converted into the canonical Sm sequence derived from the major snRNAs (AAUUUUUGGAG, U7 Sm OPT) the RNA assembles into a particle which accumulates more efficiently in the nucleus, but which is non-functional. U7 RNA with a heavily mutated Sm binding site (AACGCGUCAUG, U7 Sm MUT) is deficient in nuclear accumulation and function. By UV cross-linking U7 Sm WT RNA can be linked to three proteins, i.e. the common snRNP proteins G and B/B' and an apparently U7-specific protein of 40 kDa. As a result of altering the Sm binding site, U7 Sm OPT RNA cannot be cross-linked to the 40 kDa protein and no cross-links are obtained with U7 Sm MUT RNA. The fact that the Sm site also interacts with at least one U7-specific protein is so far unique to U7 RNA and may provide an explanation for the atypical sequence of this site. All described RNA-protein interactions, including that with the 40 kDa protein, already occur in the cytoplasm. An additional cytoplasmic photoadduct obtained with U7 Sm WT and U7 Sm OPT, but not U7 Sm MUT, RNAs is indicative of a protein of 60-80 kDa. The m7G cap structure of U7 Sm WT and U7 Sm OPT RNA becomes hypermethylated. However, the 3mG cap enhances, but is not required for, nuclear accumulation. Finally, U7 Sm WT RNA is functional in histone RNA processing even when bearing an ApppG cap.
Resumo:
Brain disease is an important cause of neurologic deficits in small ruminants, however few MRI features have been described. The aim of this retrospective, case series study was to describe MRI characteristics in a group of small ruminants with confirmed brain disease. A total of nine small ruminants (six sheep and three goats) met inclusion criteria. All had neurologic disorders localized to the brain and histopathologic confirmation. In animals with toxic-metabolic diseases, there were bilaterally symmetric MRI lesions affecting either the gray matter (one animal with polioencephalomalacia) or the white matter (two animals with enterotoxemia). In animals with suppurative inflammation, asymmetric focal brainstem lesions were present (two animals with listeric encephalitis), or lesions typical of an intra-axial (one animal) or dural abscess (one animal), respectively. No MRI lesions were detected in one animal with suspected viral cerebellitis and one animal with parasitic migration tracts. No neoplastic or vascular lesions were identified in this case series. Findings from the current study supported the use of MRI for diagnosing brain diseases in small ruminants.
Resumo:
PURPOSE Treatment of vascular malformations requires the placement of a needle within vessels which may be as small as 1 mm, with the current state of the art relying exclusively on two-dimensional fluoroscopy images for guidance. We hypothesize that the combination of stereotactic image guidance with existing targeting methods will result in faster and more reproducible needle placements, as well as reduced radiationexposure, when compared to standard methods based on fluoroscopy alone. METHODS The proposed navigation approach was evaluated in a phantom experiment designed to allow direct comparison with the conventional method. An anatomical phantom of the left forearm was constructed, including an independent control mechanism to indicate the attainment of the target position. Three interventionalists (one inexperienced, two of them frequently practice the conventional fluoroscopic technique) performed 45 targeting attempts utilizing the combined and 45 targeting attempts utilizing the standard approaches. RESULTS In all 45 attempts, the users were able to reach the target when utilizing the combined approach. In two cases, targeting was stopped after 15 min without reaching the target when utilizing only the C-arm. The inexperienced user was faster when utilizing the combined approach and applied significantly less radiation than when utilizing the conventional approach. Conversely, both experienced users were faster when using the conventional approach, in one case significantly so, with no significant difference in radiation dose when compared to the combined approach. CONCLUSIONS This work presents an initial evaluation of a combined navigation fluoroscopy targeting technique in a phantom study. The results suggest that, especially for inexperienced interventionalists, navigation may help to reduce the time and the radiation dose. Future work will focus on the improvement and clinical evaluation of the proposed method.
Resumo:
The three articles that comprise this dissertation describe how small area estimation and geographic information systems (GIS) technologies can be integrated to provide useful information about the number of uninsured and where they are located. Comprehensive data about the numbers and characteristics of the uninsured are typically only available from surveys. Utilization and administrative data are poor proxies from which to develop this information. Those who cannot access services are unlikely to be fully captured, either by health care provider utilization data or by state and local administrative data. In the absence of direct measures, a well-developed estimation of the local uninsured count or rate can prove valuable when assessing the unmet health service needs of this population. However, the fact that these are “estimates” increases the chances that results will be rejected or, at best, treated with suspicion. The visual impact and spatial analysis capabilities afforded by geographic information systems (GIS) technology can strengthen the likelihood of acceptance of area estimates by those most likely to benefit from the information, including health planners and policy makers. ^ The first article describes how uninsured estimates are currently being performed in the Houston metropolitan region. It details the synthetic model used to calculate numbers and percentages of uninsured, and how the resulting estimates are integrated into a GIS. The second article compares the estimation method of the first article with one currently used by the Texas State Data Center to estimate numbers of uninsured for all Texas counties. Estimates are developed for census tracts in Harris County, using both models with the same data sets. The results are statistically compared. The third article describes a new, revised synthetic method that is being tested to provide uninsured estimates at sub-county levels for eight counties in the Houston metropolitan area. It is being designed to replicate the same categorical results provided by a current U.S. Census Bureau estimation method. The estimates calculated by this revised model are compared to the most recent U.S. Census Bureau estimates, using the same areas and population categories. ^
Resumo:
Thoracic Aortic Aneurysms and Dissections (TAAD) are the fifteenth leading cause of death in the United States. About 15% of TAAD patients have family history of the disease. The most commonly mutated gene in these families is ACTA2, encoding smooth muscle-specific α-actin. ACTA2 missense mutations predispose individuals both to TAAD and to vascular occlusive disease of small, muscular arteries. Mice carrying an Acta2 R258C mutant transgene with a wildtype Acta2 promoter were generated and bred with Acta2-/- mice to decrease the wildtype: mutant Acta2 ratio. Acta2+/+ R258C TGmice have decreased aortic contractility without aortic disease. Acta2+/- R258C TG mice, however, have significant aortic dilatations by 12 weeks of age and a hyperproliferative response to injury. We characterized smooth muscle cells (SMCs) from bothmouse models under the hypothesis that mutant α-actin has a dominant negative effect, leading to impaired contractile filament formation/stability, improper focal adhesion maturation and increased proliferation. Explanted aortic SMCs from Acta2+/+ R258C TG mice are differentiated - they form intact filaments, express higher levels of contractile markers compared to wildtype SMCs and have predominantly nuclear Myocardin-Related Transcription Factor A (MRTF-A) localization. However, ultracentrifugation assays showed large unpolymerized actin fractions, suggesting that the filaments are brittle. In contrast, Acta2+/- R258C TG SMCs are less well-differentiated, with pools of unpolymerized actin, more cytoplasmic MRTF-A and decreased contractile protein expression compared to wildtype cells. Ultracentrifugation assays after treating Acta2+/- R258C TGSMCs with phalloidin showed actin filament fractions, indicating that mutant α-actin can polymerize into filaments. Both Acta2+/+ R258C TGand Acta2+/- R258C TGSMCs have larger and more peripheral focal adhesions compared to wildtype SMCs. Rac1 was more activated in Acta2+/+ R258C TGSMCs; both Rac1 and RhoA were less activated in Acta2+/- R258C TG SMCs, and FAK was more activated in both transgenic SMC lines compared to wildtype. Proliferation in both cell lines was significantly increased compared to wildtype cells and could be partially attenuated by inhibition of FAK or PDGFRβ. These data support a dominant negative effect of the Acta2 R258C mutation on the SMC phenotype, with increasing phenotypic severity when wildtype: mutant α-actin levels are decreased.
Resumo:
Thoracic aortic aneurysms and dissections (TAAD) are the primary disease affecting the thoracic ascending aorta, with an incidence rate of 10.4/100,000. Although about 20% of patients carry a mutation in a single gene that causes their disease, the remaining 80% of patients may also have genetic factors that increase their risk for developing TAAD. Many of the genes that predispose to TAAD encode proteins involved in smooth muscle cell (SMC) contraction and the disease-causing mutations are predicted to disrupt contractile function. SMCs are the predominant cell type in the ascending aortic wall. Mutations in MYH11, encoding the smooth muscle specific myosin heavy chain, are a rare cause of inherited TAAD. However, rare but recurrent non-synonymous variants in MYH11 are present in the general population but do not cause inherited TAAD. The goal of this study was to assess the potential role of these rare variants in vascular diseases. Two distinct variants were selected: the most commonly seen rare variant, MYH11 R247C, and a duplication of the chromosomal region spanning the MYH11 locus at 16p13.1. Genetic analyses indicated that both of these variants were significantly enriched in patients with TAAD compared with controls. A knock-in mouse model of the Myh11 R247C rare variant was generated, and these mice survive and reproduce normally. They have no structural abnormalities of the aorta or signs of aortic disease, but do have decreased aortic contractility. Myh11R247C/R247C mice also have increased proliferative response to vascular injury in vivo and increased proliferation of SMCs in vitro. Myh11R247C/R247C SMCs have decreased contractile gene and protein expression and are dedifferentiated. In fibroblasts, myosin force generation is required for maturation of focal adhesions, and enhancers of RhoA activity replace enhancers of Rac1 activity as maturation occurs. Consistent with these previous findings, focal adhesions are smaller in Myh11R247C/R247C SMCs, and there is decreased RhoA activation. A RhoA activator (CN03) rescues the dedifferentiated phenotype of Myh11R247C/R247C SMCs. Myh11R247C/R247C mice were bred with an existing murine model of aneurysm formation, the Acta2-/- mouse. Over time, mice carrying the R247C allele in conjunction with heterozygous or homozygous loss of Acta2 had significantly increased aortic diameter, and a more rapid accumulation of pathologic markers. These results suggest that the Myh11 R247C rare variant acts as a modifier gene increasing the risk for and severity of TAAD in mice. In patients with 16p13.1 duplications, aortic MYH11 expression is increased, but there is no corresponding increase in smooth muscle myosin heavy chain protein. Using SMCs that overexpress Myh11, we identified alterations in SMC phenotype leading to excessive protein turnover. All contractile proteins, not just myosin, are affected, and the proteins are turned over by autophagic degradation. Surprisingly, these cells are also more contractile compared with wild-type SMCs. The results described in this dissertation firmly establish that rare variants in MYH11 significantly affect the phenotype of SMCs. Further, the data suggests that these rare variants do increase the risk of TAAD via pathways involving altered SMC phenotype and contraction. Therefore, this study validates that these rare genetic variants alter vascular SMCs and provides model systems to explore the contribution of rare variants to disease.
Resumo:
We examined the combined effects of light and pCO2 on growth, CO2-fixation and N2-fixation rates by strains of the unicellular marine N2-fixing cyanobacterium Crocosphaera watsonii with small (WH0401) and large (WH0402) cells that were isolated from the western tropical Atlantic Ocean. In low-pCO2-acclimated cultures (190 ppm) of WH0401, growth, CO2-fixation and N2-fixation rates were significantly lower than those in cultures acclimated to higher (present-day 385 ppm, or future 750 ppm) pCO2 treatments. Growth rates were not significantly different, however, in low-pCO2-acclimated cultures of WH0402 in comparison with higher pCO2 treatments. Unlike previous reports for C. watsonii (strain WH8501), N2-fixation rates did not increase further in cultures of WH0401 or WH0402 when acclimated to 750 ppm relative to those maintained at present-day pCO2. Both light and pCO2 had a significant negative effect on gross : net N2-fixation rates in WH0402 and trends were similar in WH0401, implying that retention of fixed N was enhanced under elevated light and pCO2. These data, along with previously reported results, suggest that C. watsonii may have wide-ranging, strain-specific responses to changing light and pCO2, emphasizing the need for examining the effects of global change on a range of isolates within this biogeochemically important genus. In general, however, our data suggest that cellular N retention and CO2-fixation rates of C. watsonii may be positively affected by elevated light and pCO2 within the next 100 years, potentially increasing trophic transfer efficiency of C and N and thereby facilitating uptake of atmospheric carbon by the marine biota.
Resumo:
We investigated how richness and composition of vascular plant species in the understory of a mixed hardwood forest stand varied with respect to the abundance and composition of the overstory. The stand is in central Spain and represents the southernmost range of distribution of several tree and herbaceous species in Europe. Understory species were identified in 46 quadrats (0.25 m2) where variables litter depth and light availability were measured. In addition, we estimated tree density, basal area, and percent basal area by tree species within 6-m-radius areas around each plot. Species richness and composition were studied using path analysis and scale-dependent geostatistical methods, respectively. We found that the relative abundance of certain trees species in the overstory was more important than total overstory abundance in explaining understory species richness. Richness decreased as soil litter depth increased, and soil litter increased as the relative proportion of Fagus sylvatica in the overstory increased, which accounted for a negative, indirect effect of Fagus sylvatica on richness. Regarding understory species composition, we found that some species distributed preferentially below certain tree species. For example, Melica uniflora was most frequent below Fagus sylvatica and Quercus petraea while the increasing proportion of Q. pyrenaica in the overstory favored the presence of Cruciata glabra, Arenaria montana, Prunus avium, Conopodium bourgaei, Holcus mollis, Stellaria media and Galium aparine in the understory. Overall, these results emphasize the importance of individual tree species in controlling the assemblage and richness of understory species in mixed stands. We conclude that soil litter accumulation is one way through which overstory composition shapes the understory community.