943 resultados para styrene butadiene rubber (SBR)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Worker populations are potentially exposed to multiple chemical substances simultaneously during the performance of routine tasks. The acute health effects from exposure to toxic concentrations of these substances are usually well-described. However, very little is known about the long-term health effects of chronic low dose exposure to all except a few chemical substances. A mortality study was performed on a population of workers employed at a butyl rubber manufacturing plant in Baton Rouge, Louisiana for the period 1943-1978, with special emphasis on potential exposure to methyl chloride.^ The study population was enumerated using company records. The mortality experience among the population was evaluated by comparing the number of observed deaths (total and cause-specific) to the expected number of deaths, based on the U.S. general age, race, sex specific rates. An internal comparison population was assembled to address the issue of lack of comparability when the U.S. rates are used to calculate expected deaths in an employed population.^ There were 18% fewer total observed deaths compared to the expected when the U.S. death rates were used to obtain the expected. Deaths from specific causes were also less than expected except when numbers of observed and expected deaths were small. Similar results were obtained when the population was characterized by intensity and duration of potential exposure to methyl chloride. When the internal comparison population was utilized to evaluate overall mortality of the study population, the relative risk was about 1.2.^ The study results were discussed and conclusions drawn in light of certain limitations of the methodology and study population size. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Huckel Molecular Orbtial method is used to treat the MO's of butadiene. The method employs analytical tools and Maple.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Houston region is home to arguably the largest petrochemical and refining complex anywhere. The effluent of this complex includes many potentially hazardous compounds. Study of some of these compounds has led to recognition that a number of known and probable carcinogens are at elevated levels in ambient air. Two of these, benzene and 1,3-butadiene, have been found in concentrations which may pose health risk for residents of Houston.^ Recent popular journalism and publications by local research institutions has increased the interest of the public in Houston's air quality. Much of the literature has been critical of local regulatory agencies' oversight of industrial pollution. A number of citizens in the region have begun to volunteer with air quality advocacy groups in the testing of community air. Inexpensive methods exist for monitoring of ozone, particulate matter and airborne toxic ambient concentrations. This study is an evaluation of a technique that has been successfully applied to airborne toxics.^ This technique, solid phase microextraction (SPME), has been used to measure airborne volatile organic hydrocarbons at community-level concentrations. It is has yielded accurate and rapid concentration estimates at a relatively low cost per sample. Examples of its application to measurement of airborne benzene exist in the literature. None have been found for airborne 1,3-butadiene. These compounds were selected for an evaluation of SPME as a community-deployed technique, to replicate previous application to benzene, to expand application to 1,3-butadiene and due to the salience of these compounds in this community. ^ This study demonstrates that SPME is a useful technique for quantification of 1,3-butadiene at concentrations observed in Houston. Laboratory background levels precluded recommendation of the technique for benzene. One type of SPME fiber, 85 μm Carboxen/PDMS, was found to be a sensitive sampling device for 1,3-butadiene under temperature and humidity conditions common in Houston. This study indicates that these variables affect instrument response. This suggests the necessity of calibration within specific conditions of these variables. While deployment of this technique was less expensive than other methods of quantification of 1,3-butadiene, the complexity of calibration may exclude an SPME method from broad deployment by community groups.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An exposure system was constructed to evaluate the performance of a personal organic vapor dosimeter (3520 OVM) at ppb concentrations of nine selected target volatile organic compounds (VOCs). These concentration levels are generally encountered in community air environments, both indoor and outdoor. It was demonstrated that the chamber system could provide closely-controlled conditions of VOC concentrations, temperature and relative humidity (RH) required for the experiments. The target experimental conditions included combinations of three VOC concentrations (10, 20 and 200 $\rm\mu g/m\sp3),$ three temperatures (10, 25 and 40$\sp\circ$C) and three RHs (12, 50 and 90% RH), leading to a total of 27 exposure conditions. No backgrounds of target VOCs were found in the exposure chamber system. In the exposure chamber, the variation of the temperature was controlled within $\pm$1$\sp\circ$C, and the variation of RH was controlled within $\pm$1.5% at 12% RH, $\pm$2% at 50% RH and $\pm$3% at 90% RH. High-emission permeation tubes were utilized to generate the target VOCs. Various patterns of the permeation rates were observed over time. The lifetimes and permeation rates of the tubes differed by compound, length of the tube and manufacturer. By carefully selecting the source and length of the tubes, and closely monitoring tube weight loss over time, the permeation tubes can be used for delivering low and stable concentrations of VOCs during multiple days.^ The results of this study indicate that the performance of the 3520 OVM is compound-specific and depends on concentration, temperature and humidity. With the exception of 1,3-butadiene under most conditions, and styrene and methylene chloride at very high relative humidities, recoveries were generally within $\pm$25% of theory, indicating that the 3520 OVM can be effectively used over the range of concentrations and environmental conditions tested with a 24-hour sampling period. Increasing humidities resulted in increasing negative bias from full recovery. Reverse diffusion conducted at 200 $\rm\mu g/m\sp3$ and five temperature/humidity combinations indicated severe diffusion losses only for 1,3-butadiene, methylene chloride and styrene under increased humidity. Overall, the results of this study do not support the need to employ diffusion samplers with backup sections for the exposure conditions tested. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solubility parameters of two SBS commercial rubbers with different structures (lineal and radial), and with slightly different styrene content have been determined by inverse gas chromatography technique. The Flory–Huggins interaction parameters of several polymer–solvent mixtures have also been calculated. The influence of the polymer composition, the solvent molecular weight and the temperature over these parameters have been discussed; besides, these parameters have been compared with previous ones, obtained by intrinsic viscosity measurements. From the Flory–Huggins interaction parameters, the infinite dilution activity coefficients of the solvents have been calculated and fitted to the well-known NRTL model. These NRTL binary interaction parameters have a great importance in modelling the separation steps in the process of obtaining the rubber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The door-closing process can reinforce the impression of a solid, rock-proof, car body or of a rather cheap, flimsy vehicle. As there are no real prototypes during rubber profile bidding-out stages, engineers need to carry out non-linear numerical simulations that involve complex phenomena as well as static and dynamic loads for several profile candidates. This paper presents a structured virtual design tool based on FEM, including constitutive laws and incompressibility constraints allowing to predict more realistically the final closing forces and even to estimate sealing overpressure as an additional guarantee of noise insulation. Comparisons with results of physical tests are performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study focuses on the generation and distribution of mineral species in fly and bottom ashes. These were formed during a fluidised co-combustion of a fossil fuel (coal) and a non-fossil fuel (tyre rubber) in a small fluidised bed combustor (7cm x 70cm). The pilot plant had continuous fuel feed using varying ratios of coal and rubber. The study also focuses on the lixiviation behaviour of metallic elements with the assessement of zinc recovering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to a growing concern over global warming, the bituminous mixture industry is making a constant effort to diminish its emissions by reducing manufacturing and installation temperatures without compromising the mechanical properties of the bituminous mixtures. The use of mixtures with tyre rubber has demonstrated that these mixtures can be economical and ecological and that they improve the behaviour of the pavements. However, bituminous mixtures with a high rubber content present one major drawback: they require higher mixing and installation temperatures due to the elevated viscosity caused by the high rubber content and thus they produce larger amounts of greenhouse gas emissions than conventional bituminous mixtures. This article presents a study of the effect of four viscosity-reducing additives (Sasobit®, Asphaltan A®, Asphaltan B® and Licomont BS 100®) on a bitumen modified with 15% rubber. The results of this study indicate that these additives successfully reduce viscosity, increase the softening temperature and reduce penetration. However, they do not have a clear effect on the test for elastic recovery and ductility at 25 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the main experimental results obtained from the study of plaster test pieces and boards with addition of various volumetric rubber fractions from mechanical grinding of end-of-life tires (ELTs), in three different particle size gradations. It includes a description of the materials employed, and their proportions. The physical and mechanical properties, as well as the thermal conductivity and acoustic insulation properties are analyzed. Experimental results obtained for specimens with addition of recycled rubber are compared with similar ones, carried out on specimens of plaster of identical features without any addition, evaluating the influence of the particle size and mixture proportions. An improvement in thermal and acoustic performance has been obtained as well as a reduction in density, and as a result, some constructive applications for paving and slabs in rehabilitation works are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En los últimos años, debido a la creciente preocupación por el calentamiento global y el cambio climático, uno de los retos más importantes a los que se enfrenta nuestra sociedad es el uso eficiente y económico de energía así como la necesidad correspondiente de reducir los gases de efecto invernadero (GEI). Las tecnologías de mezclas semicalientes se han convertido en un nuevo e importante tema de investigación en el campo de los materiales para pavimentos ya que ofrece una solución potencial para la reducción del consumo energético y las emisiones de GEI durante la producción y puesta en obra de las mezclas bituminosas. Por otro lado, los pavimentos que contienen polvo de caucho procedente de neumático fuera de uso, al hacer uso productos de desecho, ahorran energía y recursos naturales. Estos pavimentos ofrecen una resistencia mejorada a la formación de roderas, a la fatiga y a la fisuración térmica, reducen los costes de mantenimiento y el ruido del tráfico así como prolongan la vida útil del pavimento. Sin embargo, estas mezclas presentan un importante inconveniente: la temperatura de fabricación se debe aumentar en comparación con las mezclas asfálticas convencionales, ya que la incorporación de caucho aumenta la viscosidad del ligante y, por lo tanto, se producen mayores cantidades de emisiones de GEI. En la presente Tesis, la tecnología de mezclas semicalientes con aditivos orgánicos (Sasobit, Asphaltan A, Asphaltan B, Licomont) se incorporó a la de betunes de alta viscosidad modificados con caucho (15% y 20% de caucho) con la finalidad de dar una solución a los inconvenientes de mezclas con caucho gracias a la utilización de aditivos reductores de la viscosidad. Para este fin, se estudió si sería posible obtener una producción más sostenible de mezclas con betunes de alto contenido en caucho sin afectar significativamente su nivel de rendimiento mecánico. La metodología aplicada para evaluar y comparar las características de las mezclas consistió en la realización de una serie de ensayos de laboratorio para betunes y mezclas con caucho y con aditivos de mezclas semicalientes y de un análisis del ciclo de vida híbrido de la producción de mezclas semicalientes teniendo en cuenta la papel del aditivo en la cadena de suministro con el fin de cuantificar con precisión los beneficios de esta tecnología. Los resultados del estudio indicaron que la incorporación de los aditivos permite reducir la viscosidad de los ligantes y, en consecuencia, las temperaturas de producción y de compactación de las mezclas. Por otro lado, aunque la adición de caucho mejoró significativamente el comportamiento mecánico de los ligantes a baja temperatura reduciendo la susceptibilidad al fenómeno de fisuración térmica, la adición de las ceras aumentó ligeramente la rigidez. Los resultados del estudio reológico mostraron que la adición de porcentajes crecientes de caucho mejoraban la resistencia del pavimento con respecto a la resistencia a la deformación permanente a altas temperaturas y a la fisuración térmica a bajas temperaturas. Además, se observó que los aditivos mejoran la resistencia a roderas y la elasticidad del pavimento al aumentar el módulo complejo a altas temperaturas y al disminuir del ángulo de fase. Por otra parte, el estudio reológico confirmó que los aditivos estudiados aumentan ligeramente la rigidez a bajas temperaturas. Los ensayos de fluencia llevados a cabo con el reómetro demostraron una vez más la mejora en la elasticidad y en la resistencia a la deformación permanente dada por la adición de las ceras. El estudio de mezclas con caucho y aditivos de mezclas semicalientes llevado a cabo demostró que las temperaturas de producción/compactación se pueden disminuir, que las mezclas no experimentarían escurrimiento, que los aditivos no cambian significativamente la resistencia conservada y que cumplen la sensibilidad al agua exigida. Además, los aditivos aumentaron el módulo de rigidez en algunos casos y mejoraron significativamente la resistencia a la deformación permanente. Asimismo, a excepción de uno de los aditivos, las mezclas con ceras tenían la misma o mayor resistencia a la fatiga en comparación con la mezcla control. Los resultados del análisis de ciclo de vida híbrido mostraron que la tecnología de mezclas semicalientes es capaz de ahorrar significativamente energía y reducir las emisiones de GEI, hasta un 18% y 20% respectivamente, en comparación con las mezclas de control. Sin embargo, en algunos de los casos estudiados, debido a la presencia de la cera, la temperatura de fabricación debe reducirse en un promedio de 8 ºC antes de que los beneficios de la reducción de emisiones y el consumo de combustible puedan ser obtenidos. Los principales sectores contribuyentes a los impactos ambientales generados en la fabricación de mezclas semicalientes fueron el sector de los combustibles, el de la minería y el de la construcción. Due to growing concerns over global warming and climate change in recent years, one of the most important challenges facing our society is the efficient and economic use of energy, and with it, the corresponding need to reduce greenhouse gas (GHG) emissions. The Warm Mix Asphalt (WMA) technology has become an important new research topic in the field of pavement materials as it offers a potential solution for the reduction of energy consumption and GHG emissions during the production and placement of asphalt mixtures. On the other hand, pavements containing crumb-rubber modified (CRM) binders save energy and natural resources by making use of waste products. These pavements offer an improved resistance to rutting, fatigue and thermal cracking; reduce traffic noise and maintenance costs and prolong pavement life. These mixtures, however, present one major drawback: the manufacturing temperature is higher compared to conventional asphalt mixtures as the rubber lends greater viscosity to the binder and, therefore, larger amounts of GHG emissions are produced. In this dissertation the WMA technology with organic additives (Sasobit, Asphaltan A, Asphaltan B and Licomont) was applied to CRM binders (15% and 20% of rubber) in order to offer a solution to the drawbacks of asphalt rubber (AR) mixtures thanks to the use of fluidifying additives. For this purpose, this study sought to determine if a more sustainable production of AR mixtures could be obtained without significantly affecting their level of mechanical performance. The methodology applied in order to evaluate and compare the performance of the mixtures consisted of carrying out several laboratory tests for the CRM binders and AR mixtures with WMA additives (AR-WMA mixtures) and a hybrid input-output-based life cycle assessment (hLCA) of the production of WMA. The results of the study indicated that the incorporation of the organic additives were able to reduce the viscosity of the binders and, consequently, the production and compaction temperatures. On the other hand, although the addition of rubber significantly improved the mechanical behaviour of the binders at low temperatures reducing the susceptibility to thermal cracking phenomena, the addition of the waxes slightly increased the stiffness. Master curves showed that the addition of increasing percentages of rubber improved the resistance of the pavement regarding both resistance to permanent deformation at high temperatures and thermal cracking at low temperatures. In addition, the waxes improved the rutting resistance and the elasticity as they increased the complex modulus at high temperatures and decreased the phase angle. Moreover, master curves also attest that the WMA additives studied increase the stiffness at low temperatures. The creep tests carried out proved once again the improvement in the elasticity and in the resistance to permanent deformation given by the addition of the waxes. The AR-WMA mixtures studied have shown that the production/compaction temperatures can be decreased, that the mixtures would not experience binder drainage, that the additives did not significantly change the retained resistance and fulfilled the water sensitivity required. Furthermore, the additives increased the stiffness modulus in some cases and significantly improved the permanent deformation resistance. Except for one of the additives, the waxes had the same or higher fatigue resistance compared to the control mixture. The results of the hLCA demonstrated that the WMA technology is able to significantly save energy and reduce GHG emissions, up to 18% and 20%, respectively, compared to the control mixtures. However, in some of the case studies, due to the presence of wax, the manufacturing temperature at the asphalt plant must be reduced by an average of 8ºC before the benefits of reduced emissions and fuel usage can be obtained. The results regarding the overall impacts generated using a detailed production layer decomposition indicated that fuel, mining and construction sectors are the main contributors to the environmental impacts of manufacturing WMA mixtures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El propósito del presente proyecto fue seleccionar la configuración de fabricación de probetas obtenidas mediante el proceso de Modelado por Deposición Fundida (FDM) con el termoplástico acrilonitrilo butadieno estireno (ABS), que optimice las propiedades mecánicas de las probetas y el ahorro de material de apoyo. Se aplicaron técnicas de caracterización física y mecánica y de microscopia electrónica de barrido (SEM). Los resultados indicaron que las probetas verticales presentaron aproximadamente el 6 % de pérdida de material frente cerca de un 40% de las probetas horizontales. La rotura de los cordones se produjo longitudinalmente en el borde de las probetas horizontales mientras que en el borde de las probetas verticales fueron por despegue de los cordones de ABS. La rotura de los cordones en el interior de ambas probetas fue en la dirección de los cordones. ABSTRACT The purpose of this project was to select the manufacture design in test specimens obtained using Fused Deposition Modeling (FDM) with Acrylonitrile Butadiene Styrene (ABS), thus optimizing the mechanical properties of the test specimens and saving the support material. The study was carried out by mean of mechanical and physical characterization techniques as well as Scanning Electron Microscopy (SEM). The results indicated that the horizontal test specimen showed approximately 40% of material loss compared to the vertical test specimen showed a loss 8%. The ABS filament breakage occurred longitudinally on the edge of the horizontal test specimen while the ABS filament breakage was transversely by the separation of the ABS filament on the edge of the vertical tests. The breakage of the filament inside both test specimens was in the direction of the filaments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronic systems that use rugged lightweight plastics potentially offer attractive characteristics (low-cost processing, mechanical flexibility, large area coverage, etc.) that are not easily achieved with established silicon technologies. This paper summarizes work that demonstrates many of these characteristics in a realistic system: organic active matrix backplane circuits (256 transistors) for large (≈5 × 5-inch) mechanically flexible sheets of electronic paper, an emerging type of display. The success of this effort relies on new or improved processing techniques and materials for plastic electronics, including methods for (i) rubber stamping (microcontact printing) high-resolution (≈1 μm) circuits with low levels of defects and good registration over large areas, (ii) achieving low leakage with thin dielectrics deposited onto surfaces with relief, (iii) constructing high-performance organic transistors with bottom contact geometries, (iv) encapsulating these transistors, (v) depositing, in a repeatable way, organic semiconductors with uniform electrical characteristics over large areas, and (vi) low-temperature (≈100°C) annealing to increase the on/off ratios of the transistors and to improve the uniformity of their characteristics. The sophistication and flexibility of the patterning procedures, high level of integration on plastic substrates, large area coverage, and good performance of the transistors are all important features of this work. We successfully integrate these circuits with microencapsulated electrophoretic “inks” to form sheets of electronic paper.

Relevância:

20.00% 20.00%

Publicador: