951 resultados para structural phase transitions
Resumo:
The molar heat capacities of the two biphenyl liquid crystals, 3BmFF and 3BmFFXF3, with a purity of 99.7 mol% have been precisely measured by a fully automated precision adiabatic calorimeter in the temperature range between T = 80 and 350 K. Nematic phase-liquid phase transitions were found between T = 297 K and 300 K with a peak temperature of T-peak = (298.071 +/- 0.089) K for 3BmFF, and between T = 316 and 319 K with a peak temperature of T-peak = (315.543 +/- 0.043) K for 3BmFFXF3. The molar enthalpy (Delta(trs)H(m)) and entropy (Delta(trs)S(m)) corresponding to these phase transitions have been determined by means of the analysis of the heat capacity curves, which are (15.261 +/- 0.023) U mol(-1) and (51.202 +/- 0.076) J K-1 mol(-1) for 3BmFF, (31.624 +/- 0.066) kJ mol(-1) and (100.249 +/- 0.212) J K-1 mol(-1) for 3BmFFXF3, respectively. The real melting points (TI) and the ideal melting points (TO) with no impurities of the two compounds have been obtained from the fractional melting method to be (298.056 +/- 0.018) K and (298.165 +/- 0.038) K for 3BmFF, (315.585 +/- 0.043) K and (315.661 +/- 0.044) K for 3BmFFXF3, respectively. In addition, the transitions of these two biphenyl liquid crystals from nematic phase to liquid phase have further been investigated by differential scanning calorimeter (DSC) technique; the repeatability and reliability for these phase transitions were verified. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The low-temperature heat capacities of cyclohexane were measured in the temperature range from 78 to 350 K by means of an automatic adiabatic calorimeter equipped with a new sample container adapted to measure heat capacities of liquids. The sample container was described in detail. The performance of this calorimetric apparatus was evaluated by heat capacity measurements on water. The deviations of experimental heat capacities from the corresponding smoothed values lie within +/-0.3%, while the inaccuracy is within +/-0.4%, compared with the reference data in the whole experimental temperature range. Two kinds of phase transitions were found at 186.065 and 279.684 K corresponding solid-solid and solid-liquid phase transitions, respectively. The entropy and enthalpy of the phase transition, as well as the thermodynamic functions {H-(T)- H-298.15 K} and {S-(T)-S-298.15 K}, were derived from the heat capacity data. The mass fraction purity of cyclohexane sample used in the present calorimetric study was determined to be 99.9965% by fraction melting approach.
Resumo:
The molar heat capacity of the azeotropic mixture composed of water and benzene was measured by an adiabatic calorimeter in the temperature range from 80 to 320 K. The phase transitions took place in the temperature range from 265.409 to 275.165 K and 275.165 to 279.399 K. The phase transition temperatures were determined to be 272.945 and 278.339 K, which were corresponding to the solid-liquid phase transitions of water and benzene, respectively. The thermodynamic functions and the excess thermodynamic functions of the mixture relative to standard temperature 298.15 K were derived from the relationships of the thermodynamic functions and the function of the measured heat capacity with respect to temperature.
Resumo:
Langmuir-Blodgett (LB) films of octadecylammonium octadecanoate (C(18)H(37)j7NH(3)(+)C(17)H(35)COO(-),ODASA) and octadecylammonium octadecanoate-d(35) (C18H37+NH3+C17D35COO-, ODASA-d(53)) were prepared and their thermal behaviors were investigated by variable-temperature Fourier transform infrared transmission spectroscopy. It was found that the two hydrocarbon chains of ODASA molecule in LB films are highly ordered while that protonated (H) chain in ODASA-d(35) is partially disordered with some gauche conformers introduced at room temperature.
Resumo:
The large-size domain and continuous para-sexiphenyl (p-6P) ultrathin film was fabricated successfully on silicon dioxide (SiO2) substrate and investigated by atomic force microscopy and selected area electron diffraction. At the optimal substrate temperature of 180 degrees C, the first-layer film exhibits the mode of layer growth, and the domain size approaches 100 mu m(2). Its saturated island density (0.018 mu m(-2)) is much smaller than that of the second-layer film (0.088 mu m(-2)), which begins to show the Volmer-Weber growth mode.
Resumo:
The para-sexiphenyl (p-6P) monolayer film induces weak epitaxy growth (WEG) of disk-like organic semiconductors, and their charge mobilities are increased dramatically to the level of the corresponding single crystals [Wang et al., Adv. Mater. 2007, 19, 2168]. The growth behavior and morphology of p-6P monolayer film play decisive roles on WEG. Here, we investigated the growth behavior of p-6P submonolayer film as a function of the substrate temperature. Its growth exhibited two different mechanisms at high and low substrate temperature.
Resumo:
Lanthanum magnesium hexaluminate (LaMgAl11O19, LMA) is an attractive material for thermal barrier coatings (TBCs), and the failure of its coating was studied in this work by thermal cycling, X-ray diffraction, dilatometric measurement and thermal gravimetric-differential thermal analysis. The dilatometric measurement indicates that even though the bulk material of LMA has a higher sintering-resistance than the typical TBC material, i.e. yttria-stabilized zirconia (YSZ), the plasma sprayed coating of LMA has two serious contractions due to the re-crystallization of LMA and phase transitions of alumina.
Resumo:
The fabrication of organic semiconductor thin films is extremely important in organic electronic devices. This tutorial review-which should particularly appeal to chemists and physicists interested in organic thin-film growth, organic electronic devices and organic semiconductor materials-summarizes the method of weak epitaxy growth (WEG) and its application in the fabrication of high quality organic semiconductor thin films.
Resumo:
A series of novel, long-chain-substituted, porphyrin derivatives, meso-tetra (4-alkylamidophenyl) porphyrin ligands and their Zn complexes (alkyl = 8,10,12,14,16,18) were prepared by acylation of the amino groups of 5,10,15,20-tetra(4-aminophenyl)porphyrin by alkyl chloride. Mesomorphism was investigated by DSC, polarized optical microscopy (POM) and X-ray diffraction (XRD). Only ligands containing chains > 12 carbon atoms displayed liquid crystalline behaviour, which exhibited a high phase transition temperature and a broad mesophase temperature span, Zn complexes showed no liquid crystalline behaviour. Cyclic voltammetry, luminescence spectra and surface photovoltage spectroscopy revealed that covalent linking of an alkylamido group to the tetraphenylporphyrin molecule influences, significantly, the properties of the porphyrin macrocycle.
Resumo:
Nanocrystalline 8YSZ (8 mol% yttria stabilized zirconia) bulk samples with grain sizes of 20-30 nm were synthesized by Sol-Gel method and then densified under a high pressure of 4.5 GPa at 1273 K for 10 min. The method led to the densification of 8YSZ to a relative density higher than 92% without grain growth. Fourier transmission Raman spectroscopy suggested that 8YSZ underwent a phase transition from the cubic phase to a phase mixture (tetragonal plus a trace of monoclinic) after the densification, which decreased the electrical conductivity to a certain degree as concluded from the impedance spectroscopy.
Resumo:
The silicon backbone conformation in poly(di-n-butylsilane) (PDBS) has been shown to be a 7/3 helix at ambient conditions, which is in marked contrast to the near-planar conformation of its homologous polymers with side chain lengths of one to three or six to eight carbon atoms. In this work, both the 7/3 helical and near-planar chain conformations are achieved by controlling the solvent evaporation rate around room temperature. The chain conformation and crystal structure obtained in this method have been correlated to the crystal morphology by wide-angle X-ray diffraction, transmission electron microscopy, electron diffraction, optical microscopy, atomic force microscopy, and UV absorption spectrum. The lath-shaped single crystals obtained at 12 degreesC correspond to an orthorhombic form with near-planar chain conformation whereas the lozenge-shaped single crystals obtained at 30 degreesC (in coexistence with the lath-shaped crystals) are orthohexagonal with a 7/3 helix.
Resumo:
The Cubic LaNi2 Laves phase has been synthesized under high pressure. The effects of temperature and pressure on the stability of the Laves phase have been studied. High pressure also induces the phase transitions from intermetallic compounds La2Ni3 and LaNi2.286 to the Laves phase.
Resumo:
Novel poly(aryl ether ketone)s were synthesized by nucleophilic substitution reactions of difluoromonomer with 4,4'-biphenol and substituted hydroquinone. The results showed that the novel polymers exhibited multiple phase transitions and formed optical birefringence textures above their melting transitions.
Resumo:
Long-range ordered stripes domain structures were observed in Dipalmitoylphosphatidylcholine (DPPC) Langmuir-Blodgett monolayer film which was spread on the subphase of lanthanide ion (Eu3+) solution and transferred to a freshly cleaved mica substrate by vertical deposition. This novel phenomenon was discussed in terms of the competitive interaction of dipole-dipole and electrostatic interactions of the DPPC molecules combined with lanthanide ions with those DPPC molecules free of lanthanide ions.