841 resultados para stability guarantee
Resumo:
A simple, RP-HPLC method was established for determining moxifloxacin and ketorolac in pharmaceutical formulations. Moxifloxacin, ketorolac and their degradation products were separated using C8 column with methanol and phosphate buffer pH 3.0 (55:45 v/v) as the mobile phase. Detection was performed at 243 nm using a diode array detector. The method was validated using ICH guidelines and was linear in the range 20-140 µg mL-1 for both analytes. Good separation of both the analytes and their degradation products was achieved using this method. The developed method can be applied successfully for the determination of moxifloxacin and ketorolac.
Stability-indicating comparative methods using mekc and lc for determination of olmesartan medoxomil
Resumo:
A stability-indicating method using MEKC was validated for the analysis of olmesartan medoxomil in tablets. Successful separation was achieved using a fused silica capillary (40 cm x 50 µm i.d.); background electrolyte consisted of a combination of 10 mmol L-1 borate buffer and 5 mmol L-1 anionic detergent sodium dodecyl sulfate (95:5; v/v) pH 6.5; hydrodynamic mode at 50 mBar for 5 s; 25 kV separation voltage at 25 ºC; and column temperature 25 ºC with detection at 257 nm. The proposed method, validated following ICH guidelines, was applied to the determination of this antihypertensive with good results compared with an LC method.
Resumo:
This study investigated the treatment of a liquid radioactive waste containing uranium (235U + 238U) using nanofiltration membranes. The membranes were immersed in the waste for 24-5000 h, and their transport properties were evaluated before and after the immersion. Surface of the membranes changed after immersion in the waste. The SW5000 h specimen lost its coating layer of polyvinyl alcohol, and its rejection of sulfate ions and uranium decreased by about 35% and 30%, respectively. After immersion in the waste, the polyamide selective layer of the membranes became less thermally stable than that before immersion.
Resumo:
A stability-indicating RP-HPLC method is presented for determination of gatifloxacin and flurbiprofen in binary combination. Gatifloxacin, flurbiprofen and their degradation products were detected at 254 nm using a BDS Hypersil C8 (250 X 4.6 mm, 5 µm) column and mixture of 20 mM phosphate buffer (pH 3.0) and methanol 30:70 v/v as mobile phase. Response was linear over the range of 15-105 mg mL-1 for gatifloxacin (r² > 0.998) and of 1.5-10.5 mg mL-1 for flurbiprofen (r² > 0.999). The developed method efficiently separated the analytical peaks from degradation products (peak purity index > 0.9999). The method developed can be applied successfully for determination of gatifloxacin and flurbiprofen in human serum, urine, pharmaceutical formulations, and their stability studies.
Resumo:
Resistance of fourteen Theobroma cacao clones to Phytophthora spp. was evaluated using stem inoculations on grafted seedlings. Concepts of phenotypic stability were used to interpret the results and to express horizontality of the resistance. The linear regression coefficient 'b', the determination coefficient (R²) and average lesion size were used to determine the level of horizontal resistance, the phenotypic stability and the predictability of all clones. The results indicated that clones P 7 and MA 15 present highest levels of horizontal resistance and stability, but with moderate predictability. Clones CAS 1 and CEPEC 13 were classified as those with high horizontal resistance, stability and predictability, while clones PA 30, UF 650 and SIAL 88 and EET 59 showed intermediate resistance and stability and high predictability. Clones SPA 17, OC 61, PA 150, SIAL 505, ICS 1 and R 41 presented high susceptibility and intermediate or low stability and moderate or high predictability.
Resumo:
Heterobimetallic carbonyl compounds of the type [Fe(CO)4(HgX)2] (X= Cl, Br, I), which have metal-metal bonds, have been prepared in order to study their thermal stabilities as a function of the halogen coordinated to mercury atoms. The characterization of the above complexes was carried out by elemental analysis, IR and NMR spectroscopies. Their thermal behaviour has been investigated and the final product was identified by IR spectroscopy and by X-ray powder diffractogram.
Resumo:
Stability constant (log beta) and thermodynamic parameters of Cd2+ complexes with sulfonamide and cephapirin were determined by Polarographic technique at pH = 7.30 ± 0.01 and µ = 1.0 M KNO3 at 250°C. The sulfonamides were sulfadiazine, sulfisoxazole, sulfamethaxazole, sulfamethazine, sulfathiazole, sulfacetamide and sulfanilamide used as primary ligands and cephapirin as secondary ligand. Cd2+ formed 1:1:1, 1:2:1 and 1:1:2 complexes. The nature of electrode processes were reversible and diffusion controlled. The stability constants and thermodynamic parameters (deltaG, deltaH and deltaS) were determined. The formation of the metal complexes has been found to be spontaneous, exothermic in nature, and entropically unfavourable at higher temperature.
Resumo:
Several papers have been described on the thermal stability of the sweetener, C12H19Cl3O8 (Sucralose). Nevertheless no study using thermoanalytical techniques was found in the literature. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC) and infrared spectroscopy, have been used to study the thermal stability and thermal decomposition of sweetener.
Resumo:
Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor’s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque reference. This method is however parameter sensitive and requires a safety margin between the theoretical torque maximum and the actual torque limit. The DTC modulation principle allows however a direct load angle adjustment without any current control. In this work a direct load angle control method has been developed. The method keeps the drive stabile and allows the maximal utilisation of the drive without a safety margin in the torque limitation.
Resumo:
Clonal cleaning, followed by pre-immunization with protective complexes of Citrus tristeza virus(CTV), allowed the commercial cultivation of Pêra sweet orange, a variety that has great importance for Brazilian citriculture but is sensitive to the virus. The use of mild protective isolates in other citrus varieties, even those more tolerant to CTV, can also be of interest to prevent the spread of severe isolates. The aim of this study was to characterize, by means of SSCP (Single Strand Conformational Polymorphism) analysis of the coat protein gene, CTV isolates present in plants of the sweet orange cultivars Pêra, Hamlin and Valencia propagated from four budwood sources: 1) old lines, 2) nucellar lines, 3) shoot-tip-grafted lines, and 4) shoot-tip-grafted lines pre-immunized with the mild CTV protective isolate 'PIAC'. We also evaluated the correlation of the obtained SSCP patterns to stem pitting intensity, tree vigor and fruit yield. SSCP results showed low genetic diversity among the isolates present in different trees of the same variety and same budwood source and, in some cases, in different budwood sources and varieties. Considering tristeza symptoms, lower intensity was noted for plants of new, shoot-tip-grafted and pre-immunized shoot-tip-grafted lines, compared to old lines of the three varieties. The observed SSCP patterns and symptomatology suggested that more severe CTV complexes infect the plants of old lines of all three varieties. The protective complex stability was observed in the SSCP patterns of CTV isolates of some shoot-tip-grafted and pre-immunized clones. It was concluded that the changes detected in other electrophoretic profiles of this treatment did not cause loss of the protective capacity of CTV isolate 'PIAC' inoculated in the pre-immunization.
Resumo:
One hundred different 5.5-year-old Eucalyptus grandis x Eucalyptus urophylla wood clones were cooked to kappa number 15-17.5 and the resulting kraft pulps oxygen-delignified to kappa 9.5-11.5 under fixed conditions, except for chemical charges. Thirteen samples showing large variations in effective alkali requirement, pulp yield and O-stage efficiency and selectivity were selected for brightness reversion studies. These samples were bleached to 90-91% ISO by DEDD and DEDP sequences and their brightness stability and chemical characteristics determined. Heat reversion of the eucalyptus kraft pulps was strongly influenced by the wood supply, with brightness loss varying in the range of 2.1-3.6 and 0.8-1.7 %ISO for ODEDD and ODEDP bleached pulps, respectively. Pulps bleached by the ODEDP sequence showed reversion values 1.3-1.9 % ISO lower than those bleached by the ODEDD sequence. Pulp carbonyl content decreased by 35-40% during the final peroxide bleaching stage. Carbonyl and carboxyl groups correlated positively with brightness reversion, as did permanganate number and acid soluble lignin. Pulp final viscosity and metal and DCM extractives contents showed no significant correlation with brightness reversion. Pulping, oxygen delignification and ECF bleaching performances also showed no correlation with brightness reversion.
Resumo:
Pluripotent cells have the potential to differentiate into all somatic cell types. As the adult human body is unable to regenerate various tissues, pluripotent cells provide an attractive source for regenerative medicine. Human embryonic stem cells (hESCs) can be isolated from blastocyst stage embryos and cultured in the laboratory environment. However, their use in regenerative medicine is restricted due to problems with immunosuppression by the host and ethical legislation. Recently, a new source of pluripotent cells was established via the direct reprogramming of somatic cells. These human induced pluripotent stem cells (hiPSCs) enable the production of patient specific cell types. However, numerous challenges, such as efficient reprogramming, optimal culture, directed differentiation, genetic stability and tumor risk need to be solved before the launch of therapeutic applications. The main objective of this thesis was to understand the unique properties of human pluripotent stem cells. The specific aims were to identify novel factors involved in maintaining pluripotency, characterize the effects of low oxygen culture on hESCs, and determine the high resolution changes in hESCs and hiPSCs during culture and reprogramming. As a result, the previously uncharacterized protein L1TD1 was determined to be specific for pluripotent cells and essential for the maintenance of pluripotency. The low oxygen culture supported undifferentiated growth and affected expression of stem cell associated transcripts. High resolution screening of hESCs identified a number of culture induced copy number variations and loss of heterozygosity changes. Further, screening of hiPSCs revealed that reprogramming induces high resolution alterations. The results obtained in this thesis have important implications for stem cell and cancer biology and the therapeutic potential of pluripotent cells.