507 resultados para spurline resonator
Resumo:
An exact expression is derived for the time-averaged electromagnetic energy within a magneto-dielectric coated sphere, which is irradiated by a plane and time-harmonic electromagnetic wave. Both the spherical shell and core are considered to be dispersive and lossy, with a realistic dispersion relation of an isotropic split-ring resonator metamaterial. We obtain analytical expressions for the stored electromagnetic energies inside the core and the shell separately and calculate their contributions to the total average energy density. The stored electromagnetic energy is calculated for two situations involving a metamaterial coated sphere: a dielectric shell and dispersive metamaterial core, and vice versa. An explicit relation between the stored energy and the optical absorption efficiency is also obtained. We show that the stored electromagnetic energy is an observable sensitive to field interferences responsible for the Fano effect. This result, together with the fact that the Fano effect is more likely to occur in metamaterials with negative refraction, suggest that our findings may be explored in applications.
Resumo:
The affinity of the d-galactose-binding lectin from Artocarpus heterophyllus lectin, known as jacalin, with immonuglobulins (Igs) was determined by biofunctionalization of a piezoelectric transducer. This piezoelectric biofunctionalized transducer was used as a mass-sensitive analytical tool, allowing the real-time binding analysis of jacalin-human immunoglobulin A1 (IgA(1)) and jacalin-bovine IgG(1) interactions from which the apparent affinity constant was calculated. The strategy was centered in immobilizing jacalin on the gold electrode's surface of the piezoelectric crystal resonator using appropriate procedures based on self-assembling of 11-mercaptoundecanoic acid and 2-mercaptoethanol thiol's mixture, a particular immobilization strategy by which it was possible to avoid cross-interaction between the proteins over electrode's surface. The apparent affinity constants obtained between jacalin-human IgA(1) and jacalin-bovine IgG(1) differed by 1 order of magnitude [(8.0 +/- 0.9) x 10(5) vs (8.3 +/- 0.1) x 10(6) L mol(-1)]. On the other hand, the difference found between human IgA(1) and human IgA(2) interaction with jacalin, eight times higher for IgA(1), was attributed to the presence of O-linked glycans in the IgA(1) hinge region, which is absent in IgA(2). Specific interaction of jacalin with O-glycans, proved to be present in the human IgA(1) and hypothetically present in bovine IgG(1) structures, is discussed as responsible for the obtained affinity values.
Resumo:
Zirconium tin titanate (ZST) is often used as a dielectric resonator for the fabrication of microwave devices. Pure compositions do not sinter easily by solid state sintering; therefore, sintering ZST requires sintering aids capable of creating defects that could improve diffusion processes and/or promote liquid phase sintering. The mechanisms by which the additives influence the microstructure and, consequently, the ZSTs dielectric properties are not very clear. The effects of ZnO, Bi2O3, and La2O3, on the stoichiometry and dielectric properties of ZST sintered at different temperatures were investigated in this study.
Resumo:
This thesis deals with two important research aspects concerning radio frequency (RF) microresonators and switches. First, a new approach for compact modeling and simulation of these devices is presented. Then, a combined process flow for their simultaneous fabrication on a SOI substrate is proposed. Compact models for microresonators and switches are extracted by applying mathematical model order reduction (MOR) to the devices finite element (FE) description in ANSYS c° . The behaviour of these devices includes forms of nonlinearities. However, an approximation in the creation of the FE model is introduced, which enables the use of linear model order reduction. Microresonators are modeled with the introduction of transducer elements, which allow for direct coupling of the electrical and mechanical domain. The coupled system element matrices are linearized around an operating point and reduced. The resulting macromodel is valid for small signal analysis around the bias point, such as harmonic pre-stressed analysis. This is extremely useful for characterizing the frequency response of resonators. Compact modelling of switches preserves the nonlinearity of the device behaviour. Nonlinear reduced order models are obtained by reducing the number of nonlinearities in the system and handling them as input to the system. In this way, the system can be reduced using linear MOR techniques and nonlinearities are introduced directly in the reduced order model. The reduction of the number of system nonlinearities implies the approximation of all distributed forces in the model with lumped forces. Both for microresonators and switches, a procedure for matrices extraction has been developed so that reduced order models include the effects of electrical and mechanical pre-stress. The extraction process is fast and can be done automatically from ANSYS binary files. The method has been applied for the simulation of several devices both at devices and circuit level. Simulation results have been compared with full model simulations, and, when available, experimental data. Reduced order models have proven to conserve the accuracy of finite element method and to give a good description of the overall device behaviour, despite the introduced approximations. In addition, simulation is very fast, both at device and circuit level. A combined process-flow for the integrated fabrication of microresonators and switches has been defined. For this purpose, two processes that are optimized for the independent fabrication of these devices are merged. The major advantage of this process is the possibility to create on-chip circuit blocks that include both microresonators and switches. An application is, for example, aswitched filter bank for wireless transceiver. The process for microresonators fabrication is characterized by the use of silicon on insulator (SOI) wafers and on a deep reactive ion etching (DRIE) step for the creation of the vibrating structures in single-crystal silicon and the use of a sacrificial oxide layer for the definition of resonator to electrode distance. The fabrication of switches is characterized by the use of two different conductive layers for the definition of the actuation electrodes and by the use of a photoresist as a sacrificial layer for the creation of the suspended structure. Both processes have a gold electroplating step, for the creation of the resonators electrodes, transmission lines and suspended structures. The combined process flow is designed such that it conserves the basic properties of the original processes. Neither the performance of the resonators nor the performance of the switches results affected by the simultaneous fabrication. Moreover, common fabrication steps are shared, which allows for cheaper and faster fabrication.
Resumo:
Dynamische Messungen mit Quarzresonatoren Die Resonanzfrequenz von Quarzoszillatoren liegt im MHz-Bereich. Die Resonanzen haben hohe Gueten und sind somit empfindlich auf kleine Aenderungen an der Resonatoroberflaeche. 1. Es wurde ein Aufbau entwickelt, um Reibung bei hohen Oberflaechengeschwindigkeiten zu messen (v = 1 m/s). Bei Annaeherung einer Kugel steigen Resonanzfrequenz sowie -breite des Schwingquarzes an. Für groeßere Normalkraefte entsteht ein elastischer Kontakt, der die Frequenzerhoehung erklaert. Kurz vor Eintreten dieses Kontaktes durchlaeuft die Daempfung ein Maximum, das charakteristisch ist für das Auftreten von Reibung. Bei Erhoehung der Schichtdicke (0,4-2,5 nm) einer Schmiermittelbeschichtung (Perfluoropolyether) verringern sich sowohl die Hoehe als auch die Breite dieses Maximums. Es verschwindet mit vollstaendiger Belegung mit einer Monolage (ca. 2 nm). Dies wird durch einen intermittierenden Kontakt der beiden Oberflaechen erklaert. 2. Die Schwingquarzoberfläche wurde mit Polymerbuersten verschiedener Schichtdicken (12-230 nm) beschichtet. Der Loesungsmittelgehalt in diesen Filmen variiert mit dem Dampfdruck der umgebenden Toluolatmosphaere. Bei Trocknung durchlaufen die Filme einen loesungsmittelinduzierten Glasuebergang. Die Sorptionskurven (Loesungsmittelgehalt gegen Dampfdruck) zeigen eine Knick beim Glasuebergang, ihre Ableitungen dagegen eine Stufe. Fuer duenner werdende Schichten verschiebt sich diese Stufe zu niedrigerem Dampfdruck sowie geringerem Loesungsmittelgehalt. Außerdem wird sie breiter und ihre Hoehe nimmt ab.
Resumo:
The growing interest for Integrated Optics for sensing, telecommunications and even electronics is driving research to find solutions to the new challenges issued by a more and more fast, connected and smart world. This thesis deals with the design, the fabrication and the characterisation of the first prototypes of Microring Resonators realised using ion implanted Lithium Niobate (LiNbO3) ridge waveguides. Optical Resonator is one among the most important devices for all tasks described above. LiNbO3 is the substrate commonly used to fabricate optical modulators thanks to its electro-optic characteristics. Since it is produced in high quantity, good quality and large wafers its price is low compared to other electro-optic substrate. We propose to use ion implantation as fabrication technology because in the other way standard optical waveguides realised in LiNbO3 by Proton Exchange (PE) or metal diffusion do not allow small bending radii, which are necessary to keep the circuit footprint small. We will show in fact that this approach allows to fabricate waveguides on Lithium Niobate that are better than PE or metal diffused waveguides as it allows smaller size devices and tailoring of the refractive index profile controlling the implantation parameters. Moreover, we will show that the ridge technology based on enhanced etching rate via ion implantation produces a waveguide with roughness lower than a dry etched one. Finally it has been assessed a complete technological process for fabrication of Microring Resonator devices in Lithium Niobate by ion implantation and the first prototypes have been produced.
Resumo:
La realizzazione di stati non classici del campo elettromagnetico e in sistemi di spin è uno stimolo alla ricerca, teorica e sperimentale, da almeno trent'anni. Lo studio di atomi freddi in trappole di dipolo permette di avvicinare questo obbiettivo oltre a offrire la possibilità di effettuare esperimenti su condesati di Bose Einstein di interesse nel campo dell'interferometria atomica. La protezione della coerenza di un sistema macroscopico di spin tramite sistemi di feedback è a sua volta un obbiettivo che potrebbe portare a grandi sviluppi nel campo della metrologia e dell'informazione quantistica. Viene fornita un'introduzione a due tipologie di misura non considerate nei programmi standard di livello universitario: la misura non distruttiva (Quantum Non Demolition-QND) e la misura debole. Entrambe sono sfruttate nell'ambito dell'interazione radiazione materia a pochi fotoni o a pochi atomi (cavity QED e Atom boxes). Una trattazione delle trappole di dipolo per atomi neutri e ai comuni metodi di raffreddamento è necessaria all'introduzione all'esperimento BIARO (acronimo francese Bose Einstein condensate for Atomic Interferometry in a high finesse Optical Resonator), che si occupa di metrologia tramite l'utilizzo di condensati di Bose Einstein e di sistemi di feedback. Viene descritta la progettazione, realizzazione e caratterizzazione di un servo controller per la stabilizzazione della potenza ottica di un laser. Il dispositivo è necessario per la compensazione del ligh shift differenziale indotto da un fascio laser a 1550nm utilizzato per creare una trappola di dipolo su atomi di rubidio. La compensazione gioca un ruolo essenziale nel miglioramento di misure QND necessarie, in uno schema di feedback, per mantenere la coerenza in sistemi collettivi di spin, recentemente realizzato.
Resumo:
This thesis reports on the experimental realization, characterization and application of a novel microresonator design. The so-called “bottle microresonator” sustains whispering-gallery modes in which light fields are confined near the surface of the micron-sized silica structure by continuous total internal reflection. While whispering-gallery mode resonators in general exhibit outstanding properties in terms of both temporal and spatial confinement of light fields, their monolithic design makes tuning of their resonance frequency difficult. This impedes their use, e.g., in cavity quantum electrodynamics (CQED) experiments, which investigate the interaction of single quantum mechanical emitters of predetermined resonance frequency with a cavity mode. In contrast, the highly prolate shape of the bottle microresonators gives rise to a customizable mode structure, enabling full tunability. The thesis is organized as follows: In chapter I, I give a brief overview of different types of optical microresonators. Important quantities, such as the quality factor Q and the mode volume V, which characterize the temporal and spatial confinement of the light field are introduced. In chapter II, a wave equation calculation of the modes of a bottle microresonator is presented. The intensity distribution of different bottle modes is derived and their mode volume is calculated. A brief description of light propagation in ultra-thin optical fibers, which are used to couple light into and out of bottle modes, is given as well. The chapter concludes with a presentation of the fabrication techniques of both structures. Chapter III presents experimental results on highly efficient, nearly lossless coupling of light into bottle modes as well as their spatial and spectral characterization. Ultra-high intrinsic quality factors exceeding 360 million as well as full tunability are demonstrated. In chapter IV, the bottle microresonator in add-drop configuration, i.e., with two ultra-thin fibers coupled to one bottle mode, is discussed. The highly efficient, nearly lossless coupling characteristics of each fiber combined with the resonator's high intrinsic quality factor, enable resonant power transfers between both fibers with efficiencies exceeding 90%. Moreover, the favorable ratio of absorption and the nonlinear refractive index of silica yields optical Kerr bistability at record low powers on the order of 50 µW. Combined with the add-drop configuration, this allows one to route optical signals between the outputs of both ultra-thin fibers, simply by varying the input power, thereby enabling applications in all-optical signal processing. Finally, in chapter V, I discuss the potential of the bottle microresonator for CQED experiments with single atoms. Its Q/V-ratio, which determines the ratio of the atom-cavity coupling rate to the dissipative rates of the subsystems, aligns with the values obtained for state-of-the-art CQED microresonators. In combination with its full tunability and the possibility of highly efficient light transfer to and from the bottle mode, this makes the bottle microresonator a unique tool for quantum optics applications.
Resumo:
This dissertation deals with the design and the characterization of novel reconfigurable silicon-on-insulator (SOI) devices to filter and route optical signals on-chip. Design is carried out through circuit simulations based on basic circuit elements (Building Blocks, BBs) in order to prove the feasibility of an approach allowing to move the design of Photonic Integrated Circuits (PICs) toward the system level. CMOS compatibility and large integration scale make SOI one of the most promising material to realize PICs. The concepts of generic foundry and BB based circuit simulations for the design are emerging as a solution to reduce the costs and increase the circuit complexity. To validate the BB based approach, the development of some of the most important BBs is performed first. A novel tunable coupler is also presented and it is demonstrated to be a valuable alternative to the known solutions. Two novel multi-element PICs are then analysed: a narrow linewidth single mode resonator and a passband filter with widely tunable bandwidth. Extensive circuit simulations are carried out to determine their performance, taking into account fabrication tolerances. The first PIC is based on two Grating Assisted Couplers in a ring resonator (RR) configuration. It is shown that a trade-off between performance, resonance bandwidth and device footprint has to be performed. The device could be employed to realize reconfigurable add-drop de/multiplexers. Sensitivity with respect to fabrication tolerances and spurious effects is however observed. The second PIC is based on an unbalanced Mach-Zehnder interferometer loaded with two RRs. Overall good performance and robustness to fabrication tolerances and nonlinear effects have confirmed its applicability for the realization of flexible optical systems. Simulated and measured devices behaviour is shown to be in agreement thus demonstrating the viability of a BB based approach to the design of complex PICs.
Resumo:
Die Erzeugung von Elektronenstrahlen hoher Intensität (I$geq$2,mA) und hoher Spinpolarisation (P$geq$85%) ist für die Experimente an den geplanten glqq Linac Ringgrqq Electron--Ion--Collidern (z.B. eRHIC am Brookhaven National Laboratory) unabdingbar, stellt aber zugleich eine enorme Herausforderung dar. Die Photoemission aus ce{GaAs}--basierten Halbleitern wie z.B. den in dieser Arbeit untersuchten GaAlAs/InGaAlAs Quanten--Übergittern zeichnet sich zwar durch eine hohe Brillanz aus, die geringe Quantenausbeute von nur ca. 1% im Bereich maximaler Polarisation erfordert jedoch hohe Laserintensitäten von mehreren Watt pro $text{cm}^{2}$, was erhebliche thermische Probleme verursacht. rnrnIn dieser Arbeit konnte zunächst gezeigt werden, dass die Lebensdauer einer Photokathode mit steigender Laserleistung bzw. Temperatur exponentiell abnimmt. Durch Einbringen eines DBR--Spiegels zwischen die aktive Zone der Photokathode und ihr Substrat wird ein Großteil des ungenutzten Laserlichts wieder aus dem Kristall herausreflektiert und trägt somit nicht zur Erwärmung bei. Gleichzeitig bildet der Spiegel zusammen mit der Grenzfläche zum Vakuum eine Resonator--Struktur aus, die die aktive Zone umschließt. Dadurch kommt es für bestimmte Wellenlängen zu konstruktiver Interferenz und die Absorption in der aktiven Zone erhöht sich. Beide Effekte konnten durch vergleichenden Messungen an Kathoden mit und ohne DBR--Spiegel nachgewiesen werden. Dabei ergibt sich eine gute Übereinstimmung mit der Vorhersage eines Modells, das auf der dielektrischen Funktion der einzelnen Halbleiterstrukturen beruht. Von besonderer praktischer Bedeutung ist, dass die DBR--Kathode für einen gegebenen Photoemissions-strom eine um einen Faktor $geq$,3{,}5 kleinere Erwärmung aufweist. Dies gilt über den gesamten Wellenlängenbereich in dem die Kathode eine hohe Strahlpolarisation (P$>$80%) produzieren kann, auch im Bereich der Resonanz.rnAus zeitaufgelösten Messungen der Ladungsverteilung und Polarisation lassen sich sowohl Rückschlüsse über die Transportmechanismen im Inneren einer Kathode als auch über die Beschaffenheit ihrer Oberfläche ziehen. Im Rahmen dieser Dissertation konnte die Messgeschwindigkeit der verwendeten Apparatur durch den Einbau eines schnelleren Detektors und durch eine Automatisierung der Messprozedur entscheidend vergrößert und die resultierende Zeitauflösung mit jetzt 1{,}2 Pikosekunden annähernd verdoppelt werden.rnrnDie mit diesen Verbesserungen erhaltenen Ergebnisse zeigen, dass sich der Transport der Elektronen in Superlattice--Strukturen stark vom Transport in den bisher untersuchten Bulk--Kristallen unterscheidet. Der Charakter der Bewegung folgt nicht dem Diffusionsmodell, sondern gibt Hinweise auf lokalisierte Zustände, die nahe der Leitungsbandunterkante liegen und Elektronen für kurze Zeit einfangen können. Dadurch hat die Impulsantwort einer Kathode neben einem schnellen Abfall des Signals auch eine größere Zeitkonstante, die selbst nach 30,ps noch ein Signal in der Größenordnung von ca. 5textperthousand der Maximalintensität erzeugt.
Resumo:
In this thesis cholesteric films made of liquid crystalline cellulose derivatives with improved optical properties were prepared. The choice of the solvent, hydrogen bond influencing additives, the synthetic realization of a very high degree of substitution on the cellulosic polymer and the use of mechanical stirring at the upper concentration limit of the liquid crystalline range were the basis for an improved alignment of the applied cellulose tricarbamates. In combination with a tuned substrate treatment and film preparation method, cholesteric films were obtained, with optical properties that were theoretically predicted and only known from low molecular weight liquid crystals so far. Subsequent polymerization allowed a permanent fixing of the alignment and the fabrication of free standing and insensitive films.rnThe incorporation of inorganic nanorods into the cholesteric host material was mediated with tailored block copolymers, available via controlled radical polymerization methods. In addition to the shape match between the rodlike mesogens of the host and the nanorods it was possible to increase the miscibility of both materials. Nevertheless, the size of the nanorods, in comparison to the mesogens, in these densely packed liquid crystalline phases as well as their long equilibration times were the reasons for phase separation. Nanorods are, in principle, valuable substitutes for organics, but their utilization in cellulosic CLC was not to be combined with a high quality alignment of the cholesteric structure.rnA swelling process of polymerized films in a dye solution or dissolving dyes in non-polymerized CLC was used for incorporation of the organic chromophores. With the first method the CLC could be aligned and polymerized without any disturbance due to dye molecules. The optical properties of dye and CLC were matched, with regard to mirrorless lasing devices. The dye was optically excited and laser emission supported by the cholesteric cavity was obtained. The polarization and wavelength of the emitted radiation as well as its bandwidth, the obtained interference pattern and threshold behavior of the emission proofed the feedback mechanism that was not believed to be realizable in liquid crystalline polymers. rnUtilization of a microfluidic co-flow injection device enabled us to transfer the properties of cellulosic CLC from the planar film shape to spherical micrometer sized particles. The pure material yielded particles with distorted mesogen alignment similar to films prepared by capillary flow. Dilution of the CLC with a solvent that migrated into the carrier phase during particle preparation provided the basis for particles with well ordered areas. rnAlthough cellulose derivatives were known for their liquid crystalline behavior for decades and synthesized in mass production, their application as feedback material was affected by bad optical properties. In comparison to low molar mass compounds, the low degree of order in the CLC phase was the cause. With the improved material, defined lasing emission was shown and characterized. Derivatives of cellulose are desirable materials, because, as a renewable resource, they are available in large amounts for a low price and need only simple derivatization reactions. The fabrication of CLC films with tunable lasing emission, for which this thesis can provide a starting point, is in good agreement with today's requirements of modern technology and its miniaturization.rn
Resumo:
Efficient coupling of light to quantum emitters, such as atoms, molecules or quantum dots, is one of the great challenges in current research. The interaction can be strongly enhanced by coupling the emitter to the eva-nescent field of subwavelength dielectric waveguides that offer strong lateral confinement of the guided light. In this context subwavelength diameter optical nanofibers as part of a tapered optical fiber (TOF) have proven to be powerful tool which also provide an efficient transfer of the light from the interaction region to an optical bus, that is to say, from the nanofiber to an optical fiber. rnAnother approach towards enhancing light–matter interaction is to employ an optical resonator in which the light is circulating and thus passes the emitters many times. Here, both approaches are combined by experi-mentally realizing a microresonator with an integrated nanofiber waist. This is achieved by building a fiber-integrated Fabry-Pérot type resonator from two fiber Bragg grating mirrors with a stop-band near the cesium D2-line wavelength. The characteristics of this resonator fulfill the requirements of nonlinear optics, optical sensing, and cavity quantum electrodynamics in the strong-coupling regime. Together with its advantageous features, such as a constant high coupling strength over a large volume, tunability, high transmission outside the mirror stop band, and a monolithic design, this resonator is a promising tool for experiments with nanofiber-coupled atomic ensembles in the strong-coupling regime. rnThe resonator's high sensitivity to the optical properties of the nanofiber provides a probe for changes of phys-ical parameters that affect the guided optical mode, e.g., the temperature via the thermo-optic effect of silica. Utilizing this detection scheme, the thermalization dynamics due to far-field heat radiation of a nanofiber is studied over a large temperature range. This investigation provides, for the first time, a measurement of the total radiated power of an object with a diameter smaller than all absorption lengths in the thermal spectrum at the level of a single object of deterministic shape and material. The results show excellent agreement with an ab initio thermodynamic model that considers heat radiation as a volumetric effect and that takes the emitter shape and size relative to the emission wavelength into account. Modeling and investigating the thermalization of microscopic objects with arbitrary shape from first principles is of fundamental interest and has important applications, such as heat management in nano-devices or radiative forcing of aerosols in Earth's climate system. rnUsing a similar method, the effect of the TOF's mechanical modes on the polarization and phase of the fiber-guided light is studied. The measurement results show that in typical TOFs these quantities exhibit high-frequency thermal fluctuations. They originate from high-Q torsional oscillations that couple to the nanofiber-guided light via the strain-optic effect. An ab-initio opto-mechanical model of the TOF is developed that provides an accurate quantitative prediction for the mode spectrum and the mechanically induced polarization and phase fluctuations. These high-frequency fluctuations may limit the ultimate ideality of fiber-coupling into photonic structures. Furthermore, first estimations show that they may currently limit the storage time of nanofiber-based atom traps. The model, on the other hand, provides a method to design TOFs with tailored mechanical properties in order to meet experimental requirements. rn
Resumo:
Im Rahmen der vorliegenden Arbeit wurde ein schnelles, piezobasiertes Frequenztuningsystem für aktuelle sowie zukünftige supraleitende (sl) CH-Kavitäten entwickelt. Die Grundlage des hierbei verwendeten Tuningkonzepts unterscheidet sich von bisherigen, konventionellen Tuningmethoden supraleitender Kavitäten grundlegend. Zum Ausgleichen von unerwünschten Frequenzverstimmungen während des Beschleunigerbetriebes werden sogenannte bewegliche Balgtuner in das Innere der Resonatorgeometrie geschweißt. Aufgrund ihrer variablen Länge können diese die Kapazität der Kavität und somit die Resonanzfrequenz gezielt beeinflussen. Die Antriebsmechanik, die für die Auslenkung bzw. Stauchung der Balgtuner sorgt, besteht aus einer langsamen, schrittmotorbetriebenen und einer schnellen, piezobasierten Tuningeinheit, welche auf der Außenseite des Heliummantels der jeweiligen CH-Kavität installiert wird. Zur Überprüfung dieses neuartigen Tuningkonzepts wurde in der Werkstatt des Instituts für Angewandte Physik (IAP) der Goethe Universität Frankfurt ein Prototyp der gesamten Tuningeinheit aus Edelstahl gefertigt. Die Funktionsweise der langsamen sowie schnellen Tuningeinheit konnten hierbei in ersten Messungen bei Raumtemperatur erfolgreich getestet werden. Somit stellt die in dieser Arbeit entwickelte Tuningeinheit eine vielversprechende Möglichkeit des dynamischen Frequenztunings supraleitender CH-Strukturen dar. rnDes Weiteren wurden im Rahmen der Arbeit mit Hilfe der Simulationsprogramme ANSYS Workbench sowie CST MicroWave Studio gekoppelte strukturmechanische und elektromagnetische Simulationen der sl 217 MHz CH sowie der sl 325 MHz CH-Kavität durchgeführt. Hierbei konnte zum einen der Frequenzbereich und somit der notwendige mechanische Hub der jeweiligen Tuningeinheit durch Bestimmung der Frequenzverstimmungen signifikant reduziert werden. Zum anderen war es möglich, die mechanische Stabilität der beiden Kavitäten zu untersuchen und somit plastische Deformationen von vornherein auszuschließen. Zur Überprüfung der Genauigkeit sämtlicher getätigter Simulationsrechnungen wurde das strukturmechanische Verhalten in Abhängigkeit äußerer Einflüsse und die daraus resultierenden Frequenzverstimmungen der CH-Kavitäten sowohl bei Raumtemperatur als auch bei kryogenen Temperaturen von 4.2 K gemessen. Hierbei zeigten sich zum Teil hervorragende Übereinstimmungen zwischen den simulierten und gemessenen Werten mit Diskrepanzen von unter 10%. Mit Hilfe dieser Ergebnisse konnte gezeigt werden, dass die gekoppelte Simulation ein essentielles Werkzeug während der Entwicklungsphase einer supraleitenden Beschleunigungsstruktur darstellt, so dass die für den Betrieb erforderliche mechanische Stabilität einer supraleitenden Kavität erreicht werden kann. rn
Resumo:
We present experimental results on the intracavity generation of radially polarized light by incorporation of a polarization-selective mirror in a CO2 -laser resonator. The selectivity is achieved with a simple binary dielectric diffraction grating etched in the backsurface of the mirror substrate. Very high polarization selectivity was achieved, and good agreement of simulation and experimental results is shown. The overall radial polarization purity of the generated laser beam was found to be higher than 90% .