968 resultados para soil erosion


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Like other regions of the world, the EU is developing biofuels in the transport sector to reduce oil consumption and mitigate climate change. To promote them, it has adopted favourable legislation since the 2000s. In 2009 it even decided to oblige each Member State to ensure that by 2020 the share of energy coming from renewable sources reached at least 10% of their final consumption of energy in the transport sector. Biofuels are considered the main instrument to reach that percentage since the development of other alternatives (such as hydrogen and electricity) will take much longer than expected. Meanwhile, these various legislative initiatives have driven the production and consumption of biofuels in the EU. Biofuels accounted for 4.7% of EU transport fuel consumption in 2011. They have also led to trade and investment in biofuels on a global scale. This large-scale expansion of biofuels has, however, revealed numerous negative impacts. These stem from the fact that first-generation biofuels (i.e., those produced from food crops), of which the most important types are biodiesel and bioethanol, are used almost exclusively to meet the EU’s renewable 10% target in transport. Their negative impacts are: socioeconomic (food price rises), legal (land-grabbing), environmental (for instance, water stress and water pollution; soil erosion; reduction of biodiversity), climatic (direct and indirect land-use effects resulting in more greenhouse gas emissions) and public finance issues (subsidies and tax relief). The extent of such negative impacts depends on how biofuel feedstocks are produced and processed, the scale of production, and in particular, how they influence direct land use change (DLUC) and indirect land use change (ILUC) and the international trade. These negative impacts have thus provoked mounting debates in recent years, with a particular focus on ILUC. They have forced the EU to re-examine how it deals with biofuels and submit amendments to update its legislation. So far, the EU legislation foresees that only sustainable biofuels (produced in the EU or imported) can be used to meet the 10% target and receive public support; and to that end, mandatory sustainability criteria have been defined. Yet they have a huge flaw. Their measurement of greenhouse gas savings from biofuels does not take into account greenhouse gas emissions resulting from ILUC, which represent a major problem. The Energy Council of June 2014 agreed to set a limit on the extent to which firstgeneration biofuels can count towards the 10% target. But this limit appears to be less stringent than the ones made previously by the European Commission and the European Parliament. It also agreed to introduce incentives for the use of advanced (second- and third-generation) biofuels which would be allowed to count double towards the 10% target. But this again appears extremely modest by comparison with what was previously proposed. Finally, the approach chosen to take into account the greenhouse gas emissions due to ILUC appears more than cautious. The Energy Council agreed that the European Commission will carry out a reporting of ILUC emissions by using provisional estimated factors. A review clause will permit the later adjustment of these ILUC factors. With such legislative orientations made by the Energy Council, one cannot consider yet that there is a major shift in the EU biofuels policy. Bolder changes would have probably meant risking the collapse of the high-emission conventional biodiesel industry which currently makes up the majority of Europe’s biofuel production. The interests of EU farmers would have also been affected. There is nevertheless a tension between these legislative orientations and the new Commission’s proposals beyond 2020. In any case, many uncertainties remain on this issue. As long as solutions have not been found to minimize the important collateral damages provoked by the first generation biofuels, more scientific studies and caution are needed. Meanwhile, it would be wise to improve alternative paths towards a sustainable transport sector, i.e., stringent emission and energy standards for all vehicles, better public transport systems, automobiles that run on renewable energy other than biofuels, or other alternatives beyond the present imagination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Appendices (p. 1-14): A. Model state act for soil erosion and sediment control--B. Selected bibliography on sediment control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Description based on: 1984; title from cover.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Title from cover.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes a theoretical explanation of the variations of the sediment delivery ratio (SDR) versus catchment area relationships and the complex patterns in the behavior of sediment transfer processes at catchment scale. Taking into account the effects of erosion source types, deposition, and hydrological controls, we propose a simple conceptual model that consists of two linear stores arranged in series: a hillslope store that addresses transport to the nearest streams and a channel store that addresses sediment routing in the channel network. The model identifies four dimensionless scaling factors, which enable us to analyze a variety of effects on SDR estimation, including (1) interacting processes of erosion sources and deposition, (2) different temporal averaging windows, and (3) catchment runoff response. We show that the interactions between storm duration and hillslope/channel travel times are the major controls of peak-value-based sediment delivery and its spatial variations. The interplay between depositional timescales and the travel/residence times determines the spatial variations of total-volume-based SDR. In practical terms this parsimonious, minimal complexity model could provide a sound physical basis for diagnosing catchment to catchment variability of sediment transport if the proposed scaling factors can be quantified using climatic and catchment properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a scientific and technical description of the modelling framework and the main results of modelling the long-term average sediment delivery at hillslope to medium-scale catchments over the entire Murray Darling Basin (MDB). A theoretical development that relates long-term averaged sediment delivery to the statistics of rainfall and catchment parameters is presented. The derived flood frequency approach was adapted to investigate the problem of regionalization of the sediment delivery ratio (SDR) across the Basin. SDR, a measure of catchment response to the upland erosion rate, was modeled by two lumped linear stores arranged in series: hillslope transport to the nearest streams and flow routing in the channel network. The theory shows that the ratio of catchment sediment residence time (SRT) to average effective rainfall duration is the most important control in the sediment delivery processes. In this study, catchment SRTs were estimated using travel time for overland flow multiplied by an enlargement factor which is a function of particle size. Rainfall intensity and effective duration statistics were regionalized by using long-term measurements from 195 pluviograph sites within and around the Basin. Finally, the model was implemented across the MDB by using spatially distributed soil, vegetation, topographical and land use properties under Geographic Information System (GIs) environment. The results predict strong variations in SDR from close to 0 in floodplains to 70% in the eastern uplands of the Basin. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil erosion is one of the most pressing issues facing developing countries. The need for soil erosion assessment is paramount as a successful and productive agricultural base is necessary for economic growth and stability. In Ghana, a country with an expanding population and high potential for economic growth, agriculture is an important resource; however, most of the crop production is restricted to low technology shifting cultivation agriculture. The high intensity seasonal rainfall coincides with the early growing period of many of the crops meaning that plots are very susceptible to erosion, especially on steep sided valleys in the region south of Lake Volta. This research investigated the processes of soil erosion by rainfall with the aim of producing a sediment yield model for a small semi-agricultural catchment in rural Ghana. Various types of modelling techniques were considered to discover those most applicable to the sub-tropical environment of Southern Ghana. Once an appropriate model had been developed and calibrated, the aim was to look at how to enable the scaling up of the model using sub-catchments to calculate sedimentation rates of Lake Volta. An experimental catchment was located in Ghana, south west of Lake Volta, where data on rainstorms and the associated streamflow, sediment loads and soil data (moisture content, classification and particle size distribution) was collected to calibrate the model. Additional data was obtained from the Soil Research Institute in Ghana to explore calibration of the Universal Soil Loss Equation (USLE, Wischmeier and Smith, 1978) for Ghanaian soils and environment. It was shown that the USLE could be successfully converted to provide meaningful soil loss estimates in the Ghanaian environment. However, due to experimental difficulties, the proposed theory and methodology of the sediment yield model could only be tested in principle. Future work may include validation of the model and subsequent scaling up to estimate sedimentation rates in Lake Volta.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acknowledgements This work was funded by the projects HAR2013-43701-P (Spanish Economy and Competitiveness Ministry) and CGL2010-20672 (Spanish Ministry of Science and Innovation). This research was also partially developed with Xunta de Galicia funding (grants R2014/001 and GPC2014/009). N. Silva-Sánchez is currently supported by a FPU pre-doctoral grant (AP2010-3264) funded by the Spanish Government. We are grateful to Ana Moreno, Mariano Barriendos and Gerardo Benito who kindly provide us data included in Figure 5a. We also want to thank constructive comments from two anonymous reviewers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acknowledgements This work was funded by the projects HAR2013-43701-P (Spanish Economy and Competitiveness Ministry) and CGL2010-20672 (Spanish Ministry of Science and Innovation). This research was also partially developed with Xunta de Galicia funding (grants R2014/001 and GPC2014/009). N. Silva-Sánchez is currently supported by a FPU pre-doctoral grant (AP2010-3264) funded by the Spanish Government. We are grateful to Ana Moreno, Mariano Barriendos and Gerardo Benito who kindly provide us data included in Figure 5a. We also want to thank constructive comments from two anonymous reviewers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The tight coupling between the atmospheric and oceanic circulation in the equatorial Atlantic region makes this area an important region for paleoclimatic research. Previous studies report the occurrence of large amounts of terrigenous material and soil organic carbon (SOC) within the marine sediments of the eastern Gulf of Guinea. We use the accumulation rates (AR) of branched glycerol dialkyl glycerol tetraethers (GDGTs) to identify variations in SOC delivery to the Niger Fan over the last 35 ka, and compare these records to long-chain n-alkanes as a proxy for higher plant material, to an inorganic proxy for terrigenous input (aluminum AR) and to indicators for the marine productivity (AR of carbonate and crenarchaeol). In addition, sea surface temperatures (SSTs) are calculated based on the TEX86H index and environmental factors affecting the SST-reconstructions are discussed. Our results indicate that Al AR are closely connected to the rate of mean sea level change after 15 ka BP, with an additional influence of the increased monsoonal precipitation and extended vegetation cover corresponding to the African Humid Period (14.8-5.5 ka BP). Branched GDGT AR appears to be determined by shelf erosion in addition to the interplay of monsoonal precipitation and vegetation cover controlling soil erosion. Long-chain n-alkane concentrations clearly show a different trend than the other proxies, which might be due to their predominant eolian transport. Paleo-SSTs show a clear shift from colder temperatures during the last glacial period (20-22 °C) to warmer temperatures during the Holocene (24-26 °C). However, TEX86H-based SSTs are cold-biased compared to recent SSTs and Mg/Ca-based SST reconstructions, which is probably caused by a high seasonality of the Thaumarchaeota, with a maximum productivity of these organisms during the cold summer months. However, a sub-surface production of GDGTs and/or a potential bias of SST reconstruction by terrestrial input could not be completely excluded.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The need for continuous recording rain gauges makes it difficult to determine the rainfall erosivity factor (R-factor) of the (R)USLE model in areas without good temporal data coverage. In mainland Spain, the Nature Conservation Institute (ICONA) determined the R-factor at few selected pluviographs, so simple estimates of the R-factor are definitely of great interest. The objectives of this study were: (1) to identify a readily available estimate of the R-factor for mainland Spain; (2) to discuss the applicability of a single (global) estimate based on analysis of regional results; (3) to evaluate the effect of record length on estimate precision and accuracy; and (4) to validate an available regression model developed by ICONA. Four estimators based on monthly precipitation were computed at 74 rainfall stations throughout mainland Spain. The regression analysis conducted at a global level clearly showed that modified Fournier index (MFI) ranked first among all assessed indexes. Applicability of this preliminary global model across mainland Spain was evaluated by analyzing regression results obtained at a regional level. It was found that three contiguous regions of eastern Spain (Catalonia, Valencian Community and Murcia) could have a different rainfall erosivity pattern, so a new regression analysis was conducted by dividing mainland Spain into two areas: Eastern Spain and plateau-lowland area. A comparative analysis concluded that the bi-areal regression model based on MFI for a 10-year record length provided a simple, precise and accurate estimate of the R-factor in mainland Spain. Finally, validation of the regression model proposed by ICONA showed that R-ICONA index overpredicted the R-factor by approximately 19%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mineral and chemical composition of alluvial Upper-Pleistocene deposits from the Alto Guadalquivir Basin (SE Spain) were studied as a tool to identify sedimentary and geomorphological processes controlling its formation. Sediments located upstream, in the north-eastern sector of the basin, are rich in dolomite, illite, MgO and KB2BO. Downstream, sediments at the sequence base are enriched in calcite, smectite and CaO, whereas the upper sediments have similar features to those from upstream. Elevated rare-earth elements (REE) values can be related to low carbonate content in the sediments and the increase of silicate material produced and concentrated during soil formation processes in the neighbouring source areas. Two mineralogical and geochemical signatures related to different sediment source areas were identified. Basal levels were deposited during a predominantly erosive initial stage, and are mainly composed of calcite and smectite materials enriched in REE coming from Neogene marls and limestones. Then the deposition of the upper levels of the alluvial sequences, made of dolomite and illitic materials depleted in REE coming from the surrounding Sierra de Cazorla area took place during a less erosive later stage of the fluvial system. Such modification was responsible of the change in the mineralogical and geochemical composition of the alluvial sediments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The branched vs. isoprenoid tetraether (BIT) index is based on the relative abundance of branched tetraether lipids (brGDGTs) and the isoprenoidal GDGT crenarchaeol. In Lake Challa sediments the BIT index has been applied as a proxy for local monsoon precipitation on the assumption that the primary source of brGDGTs is soil washed in from the lake's catchment. Since then, microbial production within the water column has been identified as the primary source of brGDGTs in Lake Challa sediments, meaning that either an alternative mechanism links BIT index variation with rainfall or that the proxy's application must be reconsidered. We investigated GDGT concentrations and BIT index variation in Lake Challa sediments at a decadal resolution over the past 2200 years, in combination with GDGT time-series data from 45 monthly sediment-trap samples and a chronosequence of profundal surface sediments.

Our 2200-year geochemical record reveals high-frequency variability in GDGT concentrations, and therefore in the BIT index, superimposed on distinct lower-frequency fluctuations at multi-decadal to century timescales. These changes in BIT index are correlated with changes in the concentration of crenarchaeol but not with those of the brGDGTs. A clue for understanding the indirect link between rainfall and crenarchaeol concentration (and thus thaumarchaeotal abundance) was provided by the observation that surface sediments collected in January 2010 show a distinct shift in GDGT composition relative to sediments collected in August 2007. This shift is associated with increased bulk flux of settling mineral particles with high Ti / Al ratios during March–April 2008, reflecting an event of unusually high detrital input to Lake Challa concurrent with intense precipitation at the onset of the principal rain season that year. Although brGDGT distributions in the settling material are initially unaffected, this soil-erosion event is succeeded by a massive dry-season diatom bloom in July–September 2008 and a concurrent increase in the flux of GDGT-0. Complete absence of crenarchaeol in settling particles during the austral summer following this bloom indicates that no Thaumarchaeota bloom developed at that time. We suggest that increased nutrient availability, derived from the eroded soil washed into the lake, caused the massive bloom of diatoms and that the higher concentrations of ammonium (formed from breakdown of this algal matter) resulted in a replacement of nitrifying Thaumarchaeota, which in typical years prosper during the austral summer, by nitrifying bacteria. The decomposing dead diatoms passing through the suboxic zone of the water column probably also formed a substrate for GDGT-0-producing archaea. Hence, through a cascade of events, intensive rainfall affects thaumarchaeotal abundance, resulting in high BIT index values.

Decade-scale BIT index fluctuations in Lake Challa sediments exactly match the timing of three known episodes of prolonged regional drought within the past 250 years. Additionally, the principal trends of inferred rainfall variability over the past two millennia are consistent with the hydroclimatic history of equatorial East Africa, as has been documented from other (but less well dated) regional lake records. We therefore propose that variation in GDGT production originating from the episodic recurrence of strong soil-erosion events, when integrated over (multi-)decadal and longer timescales, generates a stable positive relationship between the sedimentary BIT index and monsoon rainfall at Lake Challa. Application of this paleoprecipitation proxy at other sites requires ascertaining the local processes which affect the productivity of crenarchaeol by Thaumarchaeota and brGDGTs.