931 resultados para s-Shell hypernuclei
Resumo:
In this work we present core–shell nanowire arrays of gold coated with a nanometric layer of cobalt. Despite the extremely small Co volume, these core–shell nanowires display large magneto-optical activity and plasmonic resonance determined by the geometry of the structure. Therefore, we are able to tune both the plasmonic and magneto-optical response in the visible range. Through optical and ellipsometric measurements in transmission, and applying a magnetic field to the sample, it is possible to modulate the value of the phase angle (Del {Δ}) between the S and P polarised components. It was found that the core–shell sample produced an order of magnitude larger variation in Del with changing magnetic field direction, compared with hollow cobalt tubes. The enhancement of magneto optical properties through the plasmonic nature of the gold core is complemented with the ability to induce magnetic influence over optical properties via an externally applied field. Moreover, we demonstrate for the first time the ability to use the remanent magnetisation of the Co, in conjunction with the optical properties defined by the Au, to observe remanent optical states in this uniquely designed structure. This new class of magnetoplasmonic metamaterial has great potential in a wide range of applications, from bio-sensing to data storage due to the tuneable nature of multiple resonance modes and dual functionality.
Resumo:
Aqueous core/polymer shell microcapsules with mommuclear and polynuclear core morphologies have been formed by internal phase separation from water-in-oil emulsions. The water-in-oil emulsions were prepared with the shell polymer dissolved in the aqueous phase by adding a low boiling point cosolvent. Subsequent removal of this cosolvent (by evaporation) leads to phase separation of the polymer and, if the spreading conditions are correct, formation of a polymer shell encapsulating the aqueous core. Poly(tetrahydrofuran) (PTHF) shell/aqueous core microcapsules, with a single (mononuclear) core, have been prepared, but the low T-g (-84 degreesC) of PTHF makes characterization of the particles more difficult. Poly(methyl methacrylate) and poly(isobutyl methacrylate) have higher T-g values (105 and 55 degreesC, respectively) and can be dissolved in water at sufficiently high acetone concentrations, but evaporation of the acetone from the emulsion droplets in these cases mostly resulted in polynuclear capsules, that is, having cores with many very small water droplets contained within the polymer matrix. Microcapsules with fewer, larger aqueous droplets in the core could be produced by reducing the rate of evaporation of the acetone. A possible mechanism for the formation of these polynuclear cores is suggested. These microcapsules were prepared dispersed in an oil-continuous phase. They could, however, be successfully transferred to a water-continuous phase, using a simple centrifugation technique. In this way, microcapsules with aqueous cores, dispersed in an aqueous medium, could be made. It would appear that a real challenge with the water-core systems, compared to the previous oil-core systems, is to obtain the correct order of magnitude of the three interfacial tensions, between the polymer, the aqueous phase, and the continuous oil phase; these control the spreading conditions necessary to produce shells rather than "acorns".
Resumo:
Over the course of the past two decades there has been growing research interest in the site formation processes of shell middens. This stands along-side and is being used to inform cultural, dietary and palaeo-environmental reconstructions. Just as midden site formation processes have turned out to be many and varied, however, the kinds of shell-bearing sites that past human communities created are likely to have been no less diverse. Subsuming such sites under a single category - shell middens - normalises that variation and may lead to the misinterpretation of site function. The greater part of research in this field also continues to focus on coastal shell middens; comparatively little attention has been paid to middens containing freshwater and especially terrestrial molluscs from hinterland locations. As a result, much of the current understanding about shell-midden sites carries a spatial as well as a functional bias. This paper hopes to contribute towards discussion on both fronts. It presents a detailed examination of the formation processes that went into the creation of a land snail-dominated late- to post-glacial midden from northern Vietnam, and considers the role that it may have played in the early settlement of this area. The data presented comes from ongoing archaeological excavations at Hang Boi, a cave located in the sub-coastal karstic uplands of Trang An park, in the Vietnamese Province of Ninh Binh. (C) 2010 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
Examination of a selection of shell and bone from archaeological assemblages excavated at Niah Cave and Gua Sireh, both of which are located in Sarawak, Borneo, has revealed the deliberate application of coloured material to one or more surfaces. Small fragments of the surface colourant were analysed using a variety of techniques, including microscopy, energy dispersive microwave analysis and infra-red spectrophotometry. These procedures established that, although red in colour, the applied coating in each instance was not red iron oxide. It is suggested that, based on the chemical components present, this coating was a tree resin or a similar organic substance. The paper further reports the presence of enhanced chloride values in the colourant recovered from the ancient human cranial fragment tested. It is suggested that elevated concentrations of this trace element may indicate that the site, the human remains or ingredients within the colourant were once in close proximity to the sea. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Fragments of chelonian carapace and plastral dermal plates are well-represented from archaeological sites in the world's dry and wet tropics. However, although these bones are easily identified at an element level, few archaeological reports have explored the potential of using features of form and surface sculpturing as a way to refine that identification to genus or species. The ability to achieve such a refinement would benefit environmental and human subsistence strategy models alike. The objective of the current paper was to isolate recurrent and readily visible surface characteristics on the dermal plates from a selection of commonly occurring Southeast Asian hard- and soft-shelled turtles. Using these criteria, analysis is made of the chelonian assemblage from pre- and post-Last Glacial Maximum (LGM) cultural deposits in the West Mouth of Niah Cave. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of z = 0.07 implies an absolute magnitude in the rest-frame I-band of M-1 similar to -17.6 mag. This places it in the luminosity range between normal Type Ia SNe and novae. Optical and near infrared spectroscopy reveal mostly Ti and Ca lines, and an unusually red color arising from strong depression of flux at rest wavelengths
Resumo:
We apply time-dependent R-matrix theory to study inner-shell ionization of C atoms in ultra-short high-frequency light fields with a photon energy between 170 and 245 eV. At an intensity of 1017 W/cm2, ionization is dominated by single-photon emission of a 2l electron, with two-photon emission of a 1s electron accounting for about 2-3% of all emission processes, and two-photon emission of 2l contributing about 0.5-1%. Three-photon emission of a 1s electron is estimated to contribute about 0.01-0.03%. Around a photon energy of 225 eV, two-photon emission of a 1s electron, leaving C+ in either 1s2s2p3 or 1s2p4 is resonantly enhanced by intermediate 1s2s22p3 states. The results demonstrate the capability of time-dependent R-matrix theory to describe inner-shell ionization processes including rearrangement of the outer electrons.
Resumo:
Thin-shell instability is one process which can generate entangled structures in astrophysical plasma on collisional (fluid) scales. It is driven by a spatially varying imbalance between the ram pressure of the inflowing upstream plasma and the downstream's thermal pressure at a nonplanar shock. Here we show by means of a particle-in-cell simulation that an analog process can destabilize a thin shell formed by two interpenetrating, unmagnetized, and collisionless plasma clouds. The amplitude of the shell's spatial modulation grows and saturates after about ten inverse proton plasma frequencies, when the shell consists of connected piecewise linear patches.
Resumo:
We show that the X-ray line flux of the Mn Kα line at 5.9 keV from the decay of 55Fe is a promising diagnostic to distinguish between Type Ia supernova (SN Ia) explosion models. Using radiation transport calculations, we compute the line flux for two three-dimensional explosion models: a near-Chandrasekhar mass delayed detonation and a violent merger of two (1.1 and 0.9 M⊙) white dwarfs. Both models are based on solar metallicity zero-age main-sequence progenitors. Due to explosive nuclear burning at higher density, the delayed-detonation model synthesizes ˜3.5 times more radioactive 55Fe than the merger model. As a result, we find that the peak Mn Kα line flux of the delayed-detonation model exceeds that of the merger model by a factor of ˜4.5. Since in both models the 5.9-keV X-ray flux peaks five to six years after the explosion, a single measurement of the X-ray line emission at this time can place a constraint on the explosion physics that is complementary to those derived from earlier phase optical spectra or light curves. We perform detector simulations of current and future X-ray telescopes to investigate the possibilities of detecting the X-ray line at 5.9 keV. Of the currently existing telescopes, XMM-Newton/pn is the best instrument for close (≲1-2 Mpc), non-background limited SNe Ia because of its large effective area. Due to its low instrumental background, Chandra/ACIS is currently the best choice for SNe Ia at distances above ˜2 Mpc. For the delayed-detonation scenario, a line detection is feasible with Chandra up to ˜3 Mpc for an exposure time of 106 s. We find that it should be possible with currently existing X-ray instruments (with exposure times ≲5 × 105 s) to detect both of our models at sufficiently high S/N to distinguish between them for hypothetical events within the Local Group. The prospects for detection will be better with future missions. For example, the proposed Athena/X-IFU instrument could detect our delayed-detonation model out to a distance of ˜5 Mpc. This would make it possible to study future events occurring during its operational life at distances comparable to those of the recent supernovae SN 2011fe (˜6.4 Mpc) and SN 2014J (˜3.5 Mpc).
Resumo:
Electron-impact ionization and recombination cross sections and rate coefficients are calculated for M-shell Ar atomic ions using a configuration-average distorted-wave method. The electron-impact ionization calcula- tions are for all atomic ions in the Ar isonuclear sequence. Ionization contributions include both direct ioniza- tion and excitation-autoionization processes. Good agreement is found between theory and experimental crossed-beam measurements for moderately charged ion stages. Comparisons are made with previous theoret- ical calculations where possible.We also generate rate coefficients for neutral argon ionization, based on recent R-matrix with pseudostates calculations. Electron-impact dielectronic recombination is calculated for all M-shell ions of argon. For Ar6+ and Ar7+ the current theoretical results agree well with previous level-resolved distorted-wave calculations. In order to compare with published ionization balance results our dielectronic recombination data are combined with literature values for the higher ion stages and with recent radiative recombination data for all the ion stages. We find significant differences in our equilibrium fractional abun- dances for the M-shell ions, compared with literature values. We relate these differences to the underlying atomic data.
Resumo:
A recent measurement of the dielectronic recombination (DR) of W20+ [Schippers et al., Phys.Rev.A 83, 012711 (2011)] found an exceptionally large contribution from near-threshold resonances (1 eV). This still affected the Maxwellian rate coefficient at much higher temperatures. The experimental result was found to be higher by a factor of 4 or more than that currently in use in the 100- to 300-eV range, which is of relevance for modeling magnetic fusion plasmas. We have carried out DR calculations with AUTOSTRUCTURE which include all significant single-electron promotions. Our intermediate-coupling (IC) results are more than a factor of 4 larger than our LS-coupling ones at 1 eV but still lie a factor of 3 below experiment here. If we assume complete (chaotic)mixing of near-threshold autoionizing states, then our results come into agreement (to within 20%)with experiment below 2 eV. Our total IC Maxwellian rate coefficients are 50%–30% smaller than those based on experiment over 100–300 eV.