936 resultados para rna
Resumo:
The occurrence of the insect vector (sand flies) with low rates of Leishmania infection, as well as autochthonous transmission in the absence of the natural vector in dogs, have been reported. These unexpected data suggest a hypothesis of other arthropods as a possible way of Leishmania transmission. The prevalence of Leishmania (Leishmania) infantum in fleas and ticks collected from dogs with canine visceral leishmaniasis (CVL), as well as parasite viability, were evaluated herein. The presence of L. (L.) infantum was assayed by PCR and ELISA in ectoparasites and biological samples from 73 dogs living in a Brazilian endemic area. As the occurrence of Leishmania DNA in ticks and fleas is expected given their blood-feeding habits, we next investigated whether parasites can remain viable inside ticks. PCR and ELISA confirmed that 83% of the dogs had CVL. Fleas and ticks (nymphs, male and female adults) were collected in 55% and 63% of the 73 dogs, respectively. Out of the 60 dogs with CVL, 80% harbored ectoparasites infected with L. (L.) infantum. The infection rates of the ectoparasites were 23% and 50% for fleas and ticks, respectively. The RNA analysis of the extract from ticks left in laboratory conditions during 7 to 10 days after removal from CVL dogs showed that parasites were alive. In addition, live parasites were also detected inside adult ticks recently molted in laboratory conditions. These findings indicate a higher infection rate of L. (L.) infantum in ticks and fleas, but they do not conclusively demonstrate whether these ticks can act as vectors of CVL, despite the fact that their rates were higher than those previously described in Lutzomyia longipalpis. The presence of viable L. (L.) infantum in ticks suggests the possible importance of dog ectoparasites in CVL dissemination.
Resumo:
Objective: To identify genes specifically expressed in mammalian oocytes using an in silico subtraction, and to characterize the mRNA patterns of selected genes in oocytes, embryos, and adult tissues. Design: Comparison between oocyte groups and between early embryo stages. Setting: Laboratories of embryo manipulation and molecular biology from Departamento de Genetica (FMRP) and Departamento de Ciencias Basicas (FZEA) - University of Sao Paulo. Sample(s): Oocytes were collected from slaughtered cows for measurements, in vitro fertilization, and in vitro embryo culture. Somatic tissue, excluding gonad and uterus tissue, was collected from male and female cattle. Main Outcome Measure(s): Messenger RNA levels of poly(A)-binding protein nuclear-like 1 (Pabpnl1) and methyl-CpG-binding domain protein 3-like 2 (Mbd3l2). Result(s): Pabpnl1 mRNA was found to be expressed in oocytes, and Mbd3l2 transcripts were present in embryos. Quantification of Pabpnl1 transcripts showed no difference in levels between good-and bad-quality oocytes before in vitro maturation (IVM) or between good-quality oocytes before and after IVM. However, Pabpnl1 transcripts were not detected in bad-quality oocytes after IVM. Transcripts of the Mbd3l2 gene were found in 4-cell, 8-cell, and morula-stage embryos, with the highest level observed in 8-cell embryos. Conclusion(s): Pabpnl1 gene expression is restricted to oocytes and Mbd3l2 to embryos. Different Pabpnl1 mRNA levels in oocytes of varying viability suggest an important role in fertility involving the oocyte potential for embryo development. (Fertil Steril (R) 2010; 93: 2507-12. (C) 2010 by American Society for Reproductive Medicine.)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ribosomal RNA genes of most insects are interrupted by R1/R2 retrotransposons. The occurrence of R2 retrotransposons in sciarid genomes was studied by PCR and Southern blot hybridization in three Rhynchosciara species and in Trichosia pubescens. Amplification products with the expected size for non-truncated R2 elements were only obtained in Rhynchosciara americana. The rDNA in this species is located in the proximal end of the X mitotic chromosome but in the salivary gland is associated with all four polytene chromosomes. Approximately 50% of the salivary gland rDNA of most R. americana larval groups analysed had an insertion in the R2 site, while no evidence for the presence of R1 elements was found. In-situ hybridization results showed that rDNA repeat units containing R2 take part in the structure of the extrachromosomal rDNA. Also, rDNA resistance to Bal 31 digestion could be interpreted as evidence for nonlinear rDNA as part of the rDNA in the salivary gland. Insertions in the rDNA of three other sciarid species were not detected by Southern blot and in-situ hybridization, suggesting that rDNA retrotransposons are significantly under-represented in their genomes in comparison with R. americana. R2 elements apparently restricted to R. americana correlate with an increased amount of repetitive DNA in its genome in contrast to other Rhynchosciara species. The results obtained in this work together with previous results suggest that evolutionary changes in the genus Rhynchosciara occurred by differential genomic occupation not only of satellite DNA but possibly also of rDNA retrotransposons.
Resumo:
Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) is a standard assay in molecular medicine for gene expression analysis. Samples from incisional/needle biopsies, laser-microdissected tumor cells and other biologic sources, normally available in clinical cancer studies, generate very small amounts of RNA that are restrictive for expression analysis. As a consequence, an RNA amplification procedure is required to assess the gene expression levels of such sample types. The reproducibility and accuracy of relative gene expression data produced by sensitive methodology as qRT-PCR when cDNA converted from amplified (A) RNA is used as template has not yet been properly addressed. In this study, to properly evaluate this issue, we performed 1 round of linear RNA amplification in 2 breast cell lines (C5.2 and HB4a) and assessed the relative expression of 34 genes using cDNA converted from both nonamplified (NA) and A RNA. Relative gene expression was obtained from beta actin or glyceraldehyde 3-phosphate dehydrogenase normalized data using different dilutions of cDNA, wherein the variability and fold-change differences in the expression of the 2 methods were compared. Our data showed that 1 round of linear RNA amplification, even with suboptimal-quality RNA, is appropriate to generate reproducible and high-fidelity qRT-PCR relative expression data that have similar confidence levels as those from NA samples. The use of cDNA that is converted from both A and NA RNA in a single qRT-PCR experiment clearly creates bias in relative gene expression data.
Resumo:
The aim of this study was to identify molecular pathways involved in audiogenic seizures in the epilepsy-prone Wistar Audiogenic Rat (WAR). For this, we used a suppression-subtractive hybridization (SSH) library from the hippocampus of WARs coupled to microarray comparative gene expression analysis, followed by Northern blot validation of individual genes. We discovered that the levels of the non-protein coding (npc) RNA BC1 were significantly reduced in the hippocampus of WARs submitted to repeated audiogenic seizures (audiogenic kindling) when compared to Wistar resistant rats and to both naive WARs and Wistars. By quantitative in situ hybridization, we verified lower levels of BC1 RNA in the GD-hilus and significant signal ratio reduction in the stratum radiatum and stratum pyramidale of hippocampal CA3 subfield of audiogenic kindled animals. Functional results recently obtained in a BC1-/- mouse model and our current data are supportive of a potential disruption in signaling pathways, upstream of BC1, associated with the seizure susceptibility of WARs. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Nandrolone is an anabolic-androgenic steroid (AAS) that is highly abused by individuals seeking enhanced physical strength or body appearance. Supraphysiological doses of this synthetic testosterone derivative have been associated with many physical and psychiatric adverse effects, particularly episodes of impulsiveness and overt aggressive behavior. As the neural mechanisms underlying AAS-induced behavioral disinhibition are unknown, we investigated the status of serotonergic system-related transcripts in several brain areas of mice receiving prolonged nandrolone administration. Male C57BL/6J mice received 15 mg/kg of nandrolone decanoate subcutaneously once daily for 28 days, and different sets of animals were used to investigate motor-related and emotion-related behaviors or 5-HT-related messenger RNA (mRNA) levels by real-time quantitative polymerase chain reaction. AAS-injected mice had increased body weight, were more active and displayed anxious-like behaviors in novel environments. They exhibited reduced immobility in the forced swim test, a higher probability of being aggressive and more readily attacked opponents. AAS treatment substantially reduced mRNA levels of most investigated postsynaptic 5-HT receptors in the amygdala and prefrontal cortex. Interestingly, the 5-HT(1B) mRNA level was further reduced in the hippocampus and hypothalamus. There was no alteration of 5-HT system transcript levels in the midbrain. In conclusion, high doses of AAS nandrolone in male mice recapitulate the behavioral disinhibition observed in abusers. Furthermore, these high doses downregulate 5-HT receptor mRNA levels in the amygdala and prefrontal cortex. Our combined findings suggest these areas as critical sites for AAS-induced effects and a possible role for the 5-HT(1B) receptor in the observed behavioral disinhibition.
Resumo:
The impact of ultraviolet (UV-C) photoproducts on apoptosis induction was investigated in growth arrested (confluent) and proliferating human primary fibroblasts. Confluent fibroblasts were more resistant to UV-C-induced apoptosis than proliferating cells, and this was observed for normal human cells and for cells from patients with Cockayne and trichothiodystrophy syndromes, deficient in transcription coupled repair. This resistance was sustained for at least seven days and was not due to DNA repair efficiency, as the removal of CPDs in the genome was similar under both growth conditions. There was no correlation between reduced apoptosis and RNA synthesis recovery. Following UV-C treatment, proliferating and confluent fibroblasts showed a similar level of RNA synthesis inhibition and recovery from transcription blockage. These results support the hypothesis that the decrease of DNA replication, in growth arrested cells, protects cell from UV-C-induced apoptosis, even in the presence of DNA lesions. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Background and Objective: This study evaluated the prevalence and the molecular diversity of Archaea in the subgingival biofilm samples of subjects with peri-implantitis. Material and Methods: Fifty subjects were assigned into two groups: Control (n = 25), consisting of subjects with healthy implants; and Test (n = 25), consisting of subjects with peri-implantitis sites, as well as a healthy implant. In the Test group, subgingival biofilm samples were taken from the deepest sites of the diseased implant. In both groups, subgingival biofilm was collected from one site with a healthy implant and from one site with a periodontally healthy tooth. DNA was extracted and the 16S ribosomal RNA gene was amplified with universal primer pairs for Archaea. Amplified genes were cloned and sequenced, and the phylotypes were identified by comparison with known 16S ribosomal RNA sequences. Results: In the Control group, Archaea were detected in two and three sites of the implant and the tooth, respectively. In the Test group, Archaea were detected in 12, 4 and 2 sites of diseased implants, healthy implants and teeth, respectively. Diseased implants presented a significantly higher prevalence of Archaea in comparison with healthy implants and natural teeth, irrespective of group. Over 90% of the clone libraries were formed by Methanobrevibacter oralis, which was detected in both groups. Methanobacterium congelense/curvum was detected in four subjects from the Test group and in two subjects from the Control group. Conclusion: Although M. oralis was the main species of Archaea associated with both healthy and diseased implant sites, the data indicated an increased prevalence of Archaea in peri-implantitis sites, and their role in pathogenesis should be further investigated.
Resumo:
Novel bisbenzimidazoles (4-6), characterized by 3,4-ethylenedioxy-extension of thiophene core, revealed pronounced affinity and strong thermal stabilization effect toward ds-DNA. They interact within ds-DNA grooves as dimmers or even oligomers and agglomerate along ds-RNA. Compounds 4-6 have shown moderate to strong antiproliferative effect toward panel of eight carcinoma cell lines. Compound 5 displayed the best inhibitory potential and in equitoxic concentration (IC(50) = 1 x 10 (6) M) induced accumulation of cells in G2/M phase after 48 h of incubation. Fluorescence microscopy showed that 5 entered into live HeLa cells within 30 min, but did not accumulate in nuclei even after 2.5 h. Compound 5 inhibited the growth of Trypanosome cruzi epimastigotes (IC(50) = 4.3 x 10 (6) M). (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Initially identified in yeast, the exosome has emerged as a central component of the RNA maturation and degradation machinery both in Archaea and eukaryotes. Here we describe a series of high-resolution structures of the RNase PH ring from the Pyrococcus abyssi exosome, one of them containing three 10-mer RNA strands within the exosome catalytic chamber, and report additional nucleotide interactions involving positions N5 and N7. Residues from all three Rrp41-Rrp42 heterodimers interact with a single RNA molecule, providing evidence for the functional relevance of exosome ring-like assembly in RNA processivity. Furthermore, an ADP-bound structure showed a rearrangement of nucleotide interactions at site N1, suggesting a rationale for the elimination of nucleoside diphosphate after catalysis. In combination with RNA degradation assays performed with mutants of key amino acid residues, the structural data presented here provide support for a model of exosome-mediated RNA degradation that integrates the events involving catalytic cleavage, product elimination, and RNA translocation. Finally, comparisons between the archaeal and human exosome structures provide a possible explanation for the eukaryotic exosome inability to catalyze phosphate-dependent RNA degradation.
Resumo:
RNA isolation is essential to study gene expression at the molecular level. However, RNA isolation is difficult in organisms (plants and algae) that contain large amounts of polysaccharides, which co-precipitate with RNA. Currently, there is no commercial kit available, specifically for the isolation of high-quality RNA from these organisms. Furthermore, because of the large amounts of polysaccharides, the common protocols for RNA isolation usually result in poor yields when applied to algae. Here we describe a simple method for RNA isolation from the marine red macroalga Gracilaria tenuistipitata var. liui Zhang et Xia (Rhodophyta), which can be applied to other plants and algae.
Resumo:
Shwachman-Bodian-Diamond syndrome is an autosomal recessive genetic syndrome with pleiotropic phenotypes, including pancreatic deficiencies, bone marrow dysfunctions with increased risk of myelodysplasia or leukemia, and skeletal abnormalities. This syndrome has been associated with mutations in the SBDS gene, which encodes a conserved protein showing orthologs in Archaea and eukaryotes. The Shwachman-Bodian-Diamond syndrome pleiotropic phenotypes may be an indication of different cell type requirements for a fully functional SBDS protein. RNA-binding activity has been predicted for archaeal and yeast SBDS orthologs, with the latter also being implicated in ribosome biogenesis. However, full-length SBDS orthologs function in a species-specific manner, indicating that the knowledge obtained from model systems may be of limited use in understanding major unresolved issues regarding SBDS function, namely, the effect of mutations in human SBDS on its biochemical function and the specificity of RNA interaction. We determined the solution structure and backbone dynamics of the human SBDS protein and describe its RNA binding site using NMR spectroscopy. Similarly to the crystal structures of Archaea, the overall structure of human SBDS comprises three well-folded domains. However, significant conformational exchange was observed in NMR dynamics experiments for the flexible linker between the N-terminal domain and the central domain, and these experiments also reflect the relative motions of the domains. RNA titrations monitored by heteronuclear correlation experiments and chemical shift mapping analysis identified a classic RNA binding site at the N-terminal FYSH (fungal, Yhr087wp, Shwachman) domain that concentrates most of the mutations described for the human SBDS. (C) 2010 Elsevier Ltd. All rights reserved.