935 resultados para rhoA GTP-Binding Protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The trimeric human single-stranded DNA-binding protein (HSSB; also called RP-A) plays an essential role in DNA replication, nucleotide excision repair, and homologous DNA recombination. The p34 subunit of HSSB is phosphorylated at the G1/S boundary of the cell cycle or upon exposure of cells to DNA damage-inducing agents including ionizing and UV radiation. We have previously shown that the phosphorylation of p34 is catalyzed by both cyclin-dependent kinase-cyclin A complex and DNA-dependent protein kinase. In this study, we investigated the effect of phosphorylation of p34 by these kinases on the replication and repair function of HSSB. We observed no significant difference with the unphosphorylated and phosphorylated forms of HSSB in the simian virus 40 DNA replication or nucleotide excision repair systems reconstituted with purified proteins. The phosphorylation status of the p34 subunit of HSSB was unchanged during the reactions. We suggest that the phosphorylated HSSB has no direct effect on the basic mechanism of DNA replication and nucleotide excision repair reactions in vitro, although we cannot exclude a role of p34 phosphorylation in modulating HSSB function in vivo through a yet poorly understood control pathway in the cellular response to DNA damage and replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Members of the IRF family mediate transcriptional responses to interferons (IFNs) and to virus infection. So far, proteins of this family have been studied only among mammalian species. Here we report the isolation of cDNA clones encoding two members of this family from chicken, interferon consensus sequence-binding protein (ICSBP) and IRF-1. The predicted chicken ICSBP and IRF-1 proteins show high levels of sequence similarity to their corresponding human and mouse counterparts. Sequence identities in the putative DNA-binding domains of chicken and human ICSBP and IRF-1 were 97% and 89%, respectively, whereas the C-terminal regions showed identities of 64% and 51%; sequence relationships with mouse ICSBP and IRF-1 are very similar. Chicken ICSBP was found to be expressed in several embryonic tissues, and both chicken IRF-1 and ICSBP were strongly induced in chicken fibroblasts by IFN treatment, supporting the involvement of these factors in IFN-regulated gene expression. The presence of proteins homologous to mammalian IRF family members, together with earlier observations on the occurrence of functionally homologous IFN-responsive elements in chicken and mammalian genes, highlights the conservation of transcriptional mechanisms in the IFN system, a finding that contrasts with the extensive sequence and functional divergence of the IFNs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RB, the protein product of the retinoblastoma tumor-suppressor gene, regulates the activity of specific transcription factors. This regulation appears to be mediated either directly through interactions with specific transcription factors or through an alternative mechanism. Here we report that stimulation of Sp1-mediated transcription by RB is partially abrogated at the nonpermissive temperature in ts13 cells. These cells contain a temperature-sensitive mutation in the TATA-binding protein-associated factor TAFII250, first identified as the cell cycle regulatory protein CCG1. The stimulation of Sp1-mediated transcription by RB in ts13 cells at the nonpermissive temperature could be restored by the introduction of wild-type human TAFII250. Furthermore, we demonstrate that RB binds directly to hTAFII250 in vitro and in vivo. These results suggest that RB can confer transcriptional regulation and possibly cell cycle control and tumor suppression through an interaction with TFIID, in particular with TAFII250.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The predominant localization of the major auxin-binding protein (ABP1) of maize is within the lumen of the endoplasmic reticulum. Nevertheless, all the electrophysiological evidence supporting a receptor role for ABP1 implies that a functionally important fraction of the protein must reside at the outer face of the plasma membrane. Using methods of protoplast preparation designed to minimize proteolysis, we report the detection of ABP at the surface of maize coleoptile protoplasts by the technique of silver-enhanced immunogold viewed by epipolarization microscopy. We also show that ABP clusters following auxin treatment and that this response is temperature-dependent and auxin-specific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os microRNAs (miRNAs) são pequenos RNAs endógenos não codantes de 21-24 nucleotídeos (nt) que regulam a expressão gênica de genes-alvos. Eles estão envolvidos em diversos aspectos de desenvolvimento da planta, tanto na parte aérea, quanto no sistema radicular. Entre os miRNAs, o miRNA156 (miR156) regula a família de fatores de transcrição SQUAMOSA Promoter-Binding Protein-Like (SPL) afetando diferentes processos do desenvolvimento vegetal. Estudos recentes mostram que a via gênica miR156/SPL apresenta efeito positivo tanto no aumento da formação de raízes laterais, quanto no aumento de regeneração de brotos in vitro a partir de folhas e hipocótilos em Arabidopsis thaliana. Devido ao fato de que a origem da formação de raiz lateral e a regeneração in vitro de brotos a partir de raiz principal compartilham semelhanças anatômicas e moleculares, avaliou-se no presente estudo se a via miR156/SPL, da mesma forma que a partir de explantes aéreos, também é capaz de influenciar na regeneração de brotos in vitro a partir de explantes radiculares. Para tanto foram comparados taxa de regeneração, padrão de distribuição de auxina e citocinina, análises histológicas e histoquímicas das estruturas regeneradas em plantas com via miR156/SPL alterada, incluindo planta mutante hyl1, na qual a produção desse miRNA é severamente reduzida. Além disso, foi avaliado o padrão de expressão do miR156 e específicos genes SPL durante a regeneração de brotos in vitro a partir da raiz principal de Arabidopsis thaliana. No presente trabalho observou-se que a alteração da via gênica miR156/SPL é capaz de modular a capacidade de regeneração de brotos in vitro a partir de raiz principal de Arabidopsis thaliana e a distribuição de auxina e citocinina presente nas células e tecidos envolvidos no processo de regeneração. Plantas superexpressando o miR156 apresentaram redução no número de brotos regenerados, além de ter o plastochron reduzido quando comparado com plantas controle. Adicionalmente, plantas contento o gene SPL9 resistente à clivagem pelo miR156 (rSPL9) apresentaram severa redução na quantidade de brotos, além de terem o plastochron alongado. Interessantemente, plantas mutantes hyl1-2 e plantas rSPL10 não apresentaram regeneração de brotos ao longo da raiz principal, mas sim intensa formação de raízes laterais e protuberâncias, respectivamente, tendo essa última apresentado indícios de diferenciação celular precoce. Tomados em conjunto os dados sugerem que o miR156 apresenta importante papel no controle do processo de regeneração de brotos in vitro. Entretanto, esse efeito é mais complexo em regeneração in vitro a partir de raízes do que a partir de cotilédones ou hipocótilos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de mestrado, Biologia Molecular e Genética, Universidade de Lisboa, Faculdade de Ciências, 2016

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed study has been carried out on the dependence of folate binding on the concentration of FBP (folate-binding protein) at pH 5.0, conditions selected to prevent complications arising from the pre-existing self-association of the acceptor. In contrast with the mandatory requirement that reversible interaction of ligand with a single acceptor site should exhibit a unique, rectangular hyperbolic binding curve, results obtained by ultrafiltration for the FBP-folate system required description in terms of (i) a sigmoidal relationship between concentrations of bound and free folate and (ii) an inverse dependence of affinity on FBP concentration. These findings have been attributed to the difficulties in determining the free ligand concentration in the FBP-folate mixtures for which reaction is essentially stoichiometric. This explanation also accounts for the similar published behaviour of the FBP-folate system at neutral pH, which had been attributed erroneously to acceptor self-association, a phenomenon incompatible with the experimental findings because of its prediction of a greater affinity for folate with increasing FBP concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mechanism Underlying the development of tolerance to morphine, is still incompletely understood. Morphine binds to opioid receptors, Which in turn activates downstream second messenger cascades through heterotrimeric guanine nucleotide binding proteins (G proteins). In this paper, we show that G(z), a member of the inhibitory G protein family, plays an important role in mediating the analgesic and lethality effects of morphine after tolerance development. We blocked signaling through the G(z) second messenger cascade by genetic ablation of the alpha subunit of the G protein in mice. The Galpha(z) knockout Mouse develops significantly increased tolerance to morphine. which depends oil Galpha(z), gene dosage. Further experiments demonstrate that the enhanced morphine tolerance is not caused by pharmacokinetic and behavioural learning mechanisms. The results suggest that G(z) signaling pathways are involved ill transducing the analgesic and lethality effects of morphine following chronic morphine treatment. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterogeneous nuclear ribonucleoprotein (hnRNP) A2, a trans-acting factor that mediates intracellular trafficking of myelin basic protein (MBP) mRNA to the myelin compartment in oligodendrocytes, is most abundant in the nucleus, but shuttles between the nucleus and cytoplasm. In the cytoplasm, it is associated with granules that transport mRNA from the cell body to the processes of oligodendrocytes. We found that the overall level of hnRNP A2 increased in oligodendrocytes as they differentiated into MBIP-positive cells, and that this augmentation was reflected primarily in the cytoplasmic pool of hnRNP A2 present in the form of granules. The extranuclear distribution of hnRNP A2 was also observed in brain during the period of myelination in vivo. Methylation and phosphorylation have been implicated previously in the nuclear to cytoplasmic distribution of hnRNPs, so we used drugs that block methylation and phosphorylation of hnRNPs to assess their effect on hnRNP A2 distribution and mRNA trafficking. Cultures treated with adenosine dialdehyde (AdOx), an inhibitor of S-adenosyl-L-homocysteine hydrolase, or with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), a drug that inhibits casein kinase 2 (CK2), maintained the preferential nuclear distribution of hnRNP A2. Treatment with either drug affected the transport of RNA trafficking granules that remained confined to the cell body. (C) 2004 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonalcoholic fatty liver disease is the most common of all liver diseases. The hepatic disposition [H-3]palmitate and its low-molecular-weight metabolites in perfused normal and steatotic rat liver were studied using the multiple indicator dilution technique and a physiologically based slow diffusion/bound pharmacokinetic model. The steatotic rat model was established by administration of 17alpha-ethynylestradiol to female Wistar rats. Serum biochemistry markers and histology of treated and normal animals were assessed and indicated the presence of steatosis in the treatment group. The steatotic group showed a significantly higher alanine aminotransferase-to-aspartate aminotransferase ratio, lower levels of liver fatty acid binding protein and cytochrome P-450, as well as microvesicular steatosis with an enlargement of sinusoidal space. Hepatic extraction for unchanged [H-3]palmitate and production of low-molecular-weight metabolites were found to be significantly decreased in steatotic animals. Pharmacokinetic analysis suggested that the reduced extraction and sequestration for palmitate and its metabolites was mainly attributed to a reduction in liver fatty acid binding protein in steatosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxysterol binding protein (OSBP) and its homologs have been shown to regulate lipid metabolism and vesicular transport. However, the exact molecular function of individual OSBP homologs remains uncharacterized. Here we demonstrate that the yeast OSBP homolog, Osh6p, bound phosphatidic acid and phosphoinositides via its N-terminal half containing the conserved OSBP-related domain (ORD). Using a green fluorescent protein fusion chimera, Osh6p was found to localize to the cytosol and patch-like or punctate structures in the vicinity of the plasma membrane. Further examination by domain mapping demonstrated that the N-terminal half was associated with FM4-64 positive membrane compartments; however, the C-terminal half containing a putative coiled-coil was localized to the nucleoplasm. Functional analysis showed that the deletion of OSH6 led to a significant increase in total cellular ergosterols, whereas OSH6 overexpression caused both a significant decrease in ergosterol levels and resistance to nystatin. Oleate incorporation into sterol esters was affected in OSH6 overexpressing cells. However, Lucifer yellow internalization, and FM4-64 uptake and transport were unaffected in both OSH6 deletion and overexpressing cells. Furthermore, osh6 Delta exhibited no defect in carboxypeptidase Y transport and maturation. Lastly, we demonstrated that both the conserved ORD and the putative coiled-coil motif were indispensable for the in vivo function of Osh6p. These data suggest that Osh6p plays a role primarily in regulating cellular sterol metabolism, possibly stero transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developmental- and tissue-specific expression of globin genes is mediated by a few key elements within the proximal promoter of each gene. DNA-binding assays previously identified NF-Y, GATA-1, C/EBP beta and C/EBP gamma as candidate regulators of beta-globin transcription via the CCAAT-box, a promoter element situated between CACC- and TATA-boxes. We have identified C/EBP delta as an additional beta-globin CCAAT-box binding protein. In reporter assays, we show that C/EBP delta can co-operate with EKLF, a CACC-box binding protein, to activate the beta-globin promoter, whereas C/EBP gamma inhibits the transcriptional activity of EKLF in this assay. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selenium binding protein I (SELENBP1) was identified to be the most significantly down-regulated protein in ovarian cancer cells by a membrane proteome profiling analysis. SELENBP1 expression levels in 4 normal ovaries, 8 benign ovarian tumors, 12 borderline ovarian tumors and 141 invasive ovarian cancers were analyzed with immunohistochemical assay. SELENBP1 expression was reduced in 87% cases of invasive ovarian cancer (122/141) and was significantly reduced in borderline tumors and invasive cancers (p < 0.001). Cox multivariate analysis within the 141 invasive cancer tissues showed that SELENBP1 expression score was a potential prognostic indicator for unfavorable prognosis of ovarian cancer (hazard ratio [HR], 2.18; 95% CI = L22-190; p = 0.009). Selenium can disrupt the androgen pathway, which has been implicated in modulating SELENBP1 expression. We investigated the effects of selenium and androgen on normal human ovarian surrace epithelial (HOSE) cells and cancer cells. Interestingly, SELENBP1 mRNA and protein levels were reduced by androgen and elevated by selenium treatment in the normal HOSE cells, whereas reversed responses were observed in the ovarian cancer cell lines. These results suggest that changes of SELENBP1 expression in malignant ovarian cancer are an indicator of aberration of selenium/androgen pathways and may reveal prognostic information of ovarian cancer. (c) 2005 Wiley-Liss, Inc.