959 resultados para residual biomass
Resumo:
Enzymatic hydrolysis of lignocellulosic polymers is likely to become one of the key technologies enabling industrial production of liquid biofuels and chemicals from lignocellulosic biomass. Certain types of enzymes are able to hydrolyze cellulose and hemicellulose polymers to shorter units and finally to sugar monomers. These monomeric sugars are environmentally acceptable carbon sources for the production of liquid biofuels, such as bioethanol, and other chemicals, such as organic acids. Liquid biofuels in particular have been shown to contribute to the reduction of net emissions of greenhouse gases. The solid residue of enzymatic hydrolysis is composed mainly of lignin and partially degraded fibers, while the liquid phase contains the produced sugars. It is usually necessary to separate these two phases at some point after the hydrolysis stage. Pressure filtration is an efficient technique for this separation. Solid-liquid separation of biomass suspensions is difficult, because biomass solids are able to retain high amounts of water, which cannot be readily liberated by mechanical separation techniques. Most importantly, the filter cakes formed from biomaterials are compressible, which ultimately means that the separation may not be much improved by increasing the filtration pressure. The use of filter aids can therefore facilitate the filtration significantly. On the other hand, the upstream process conditions have a major influence on the filtration process. This thesis investigates how enzymatic hydrolysis and related process conditions affect the filtration properties of a cardboard suspension. The experimental work consists of pressure filtration and characterization of hydrolysates. The study provides novel information about both issues, as the relationship between enzymatic hydrolysis conditions and subsequent filtration properties has so far not been considered in academic studies. The results of the work reveal that the final degree of hydrolysis is an important factor in the filtration stage. High hydrolysis yield generally increases the average specific cake resistance. Mixing during the hydrolysis stage resulted in undefined changes in the physical properties of the solid residue, causing a high filtration resistance when the mixing intensity was high. Theoretical processing of the mixing data led to an interesting observation: the average specific cake resistance was observed to be linearly proportional to the mixer shear stress. Another finding worth attention is that the size distributions of the solids did not change very dramatically during enzymatic hydrolysis. There was an observable size reduction during the first couple of hours, but after that the size reduction was minimal. Similarly, the size distribution of the suspended solids remained almost constant when the hydrolyzed suspension was subjected to intensive mixing. It was also found that the average specific cake resistance was successfully reduced by the use of filter aids. This reduction depended on the method of how the filter aids were applied. In order to obtain high filtration capacity, it is recommended to use the body feed mode, i.e. to mix the filter aid with the slurry prior to filtration. Regarding the quality of the filtrate, precoat filtration was observed to produce a clear filtrate with negligible suspended solids content, while the body feed filtrates were turbid, irrespective of which type of filter aid was used.
Resumo:
The production of chemicals from sawdust by wet oxidation has been investigated. Two different concentrations of sawdust; 54054 mg/l and 32683 mg/l were used in the study. The wet oxidation operating conditions were; 175 deg.C – 225 deg.C, 1MPa Oxygen, and 40 minutes to 120 minutes reaction time. Carboxylic acids were among the chemicals produced in the process. The total yield of carboxylic acids was found to increase with temperature. Also, higher yields of carboxylic acids were observed at a lower sawdust concentration. This was probably due to the high oxygen-biomass ratio at lower sawdust concentration. Higher oxygen availability at low sawdust concentration resulted in increased conversion of the sawdust; hence the higher yields of carboxylic acids. At lower sawdust concentration, a total carboxylic acid yield of 25.59 wt% was attained at 200 deg.C and 40 minutes reaction time. At higher sawdust concentration, a total carboxylic acid yield of 15.57 wt% was attained at 200 deg.C and 40-minutes reaction time. The carboxylic acids identified include formic acid, acetic acid, succinic acid and oxalic acid. The optimum temperature for the production of formic acid was found to be 200 deg.C, while the optimum temperature for the production of acetic acid was found to be 225 deg.C. A temperature of 225 deg.C and relatively short reaction time of 10 minutes was found to be the optimal condition for the production of succinic acid. Formic acid was produced in the highest yield, with an optimal yield of 13.69wt %, when the reaction temperature and time are 200 deg.C and 40 minutes respectively. The yield of formic acid was found to decrease significantly when further increasing the temperature to 225 deg.C. This was presumably due to thermal decomposition of formic acid at relatively higher temperature. However, the yield of acetic acid was found to steadily increase with temperature. This is because acetic is more thermally stable than formic acid. The yield of acetic acid did not decrease after the temperature was increased to 225 deg.C. Optimal yield of acetic acid (7.98wt %) was achieved at; 225 deg.C, and 40 minutes reaction time. Succinic acid was produced only at temperatures of 200 deg.C and 225 deg.C. Optimal yield of succinic acid (5.66wt %) was attained under the following conditions; 32683 mg/l, 225 deg.C, 1MPa O2, and 10-minutes reaction time. Oxalic acid was produced in the lowest yield and, less frequently. The optimal yield of oxalic acid (4.02 wt%) was attained at 175 deg.C and 80-minutes of reaction time The Total Organic Carbon (TOC) is found to be higher when increasing the operating temperature, thus suggesting that more organic compounds are formed at higher temperatures. The identified carboxylic acids could only account for less than 30% of the measured COD content of the various wet oxidation samples. This implies that some other unidentified compounds (reaction products) must have been present. In general, wet oxidation seems to be an effective method for converting lignocellulosic biomass into useful chemicals. Relatively higher temperatures have been found to favor the production of carboxylic acids from sawdust.
Resumo:
Neste trabalho, determinou-se o efeito residual do herbicida Only® (imazethapyr+imazapic) sobre plantas de milho, pepino, rabanete e tomate, semeadas em solo no qual o herbicida foi aplicado há 1.100 dias. O estudo foi realizado em casa de vegetação, com o delineamento experimental de casualização por bloco, com quatro repetições por tratamento. Os tratamentos avaliados foram o residual do herbicida Only® aplicado sob as plantas de arroz CL na safra 2006/2007, nas doses de 0, 100, 150 e 200 g ha-1 do produto comercial, acrescido de 0,5% do adjuvante Dash®. Foram semeadas sob as parcelas 15 sementes de cada espécie bioindicadora (milho, pepino, rabanete e tomate), sendo estas desbastadas para 10 plantas após a germinação. Após 60 dias da data da semeadura, foram avaliadas a altura de plantas, a massa seca da parte aérea e a massa seca das raízes, sendo esta última não realizada nas plantas de milho e de pepino. Os dados obtidos foram submetidos à análise da variância (p<0,05) e testados por modelos de regressão polinomial. Conclui-se que houve presença de atividade residual da mistura comercial dos herbicidas (imazethapyr+imazapic) do grupo das imidazolinonas em solo após 1.100 dias da aplicação dos herbicidas. Isso indica que as plantas de milho, pepino, rabanete e tomate podem ser utilizadas como espécies bioindicadoras de atividade residual da mistura comercial dos herbicidas (imazethapyr+imazapic) e que o rabanete e o tomate são mais sensíveis à presença do produto, quando comparados ao milho e ao pepino.
Resumo:
Surface chemistry is of great importance in plant biomass engineering and applications. The surface chemical composition of biomass which includes lignin, carbohydrates and extractives influences its interactions with chemical agents, such as pulp processing/papermaking chemicals, or enzymes for different purposes. In this thesis, the changes in the surface chemical composition of lignocellulosic biomass after physical modification for the improvement of resulting paper properties and chemical treatment for the enhancement of enzymatic hydrolysis were investigated. Low consistency (LC) refining was used as physical treatment of bleached softwood and hardwood pulp samples, and the surface chemistry of refined samples was investigated. The refined pulp was analysed as whole pulp while the fines-free fibre samples were characterized separately. The fines produced in LCrefining contributed to an enlarged surface specific area as well as the change of surface coverage by lignin and extractives, as investigated by X-ray photoelectron spectroscopy (XPS). The surface coverage by lignin of the whole pulp decreased after refining while the surface coverage by extractives increased both for pine and eucalyptus. In the case of pine, the removal of fines resulted in reduction of the surface coverage by extractives, while the surface coverage by lignin increased on fibre sample (without fines). In the case of eucalyptus, the surface coverage by lignin of fibre samples decreased after the removal of fines. In addition, the surface distribution of carbohydrates, lignin and extractives of pine and eucalyptus samples was determined by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). LC-refining increased the amounts of pentose, hexose and extractives on the surface of pine samples. ToF-SIMS also gave clear evidence about xylan deposition and reduction of surface lignin distribution on the fibre of eucalyptus. However, the changes in the surface chemical composition during the physical treatment has led to an increase in the adsorption of fluorescent whitening agents (FWAs) on fibres due to a combination of electro-static forces, specific surface area of fibres and hydrophobic interactions. Various physicochemical pretreatments were conducted on wood and non-wood biomass for enhancing enzymatic hydrolysis of polysaccharides, and the surface chemistry of the pretreated and enzymatically hydrolysed samples was investigated by field emission scanning electron microscopy (FE-SEM), XPS and ToF-SIMS. A hydrotrope was used as a relatively novel pretreatment technology both in the case of wood and non-wood biomass. For comparison, ionic liquid and hydrothermal pretreatments were applied on softwood and hardwood as well. Thus, XPS analysis showed that the surface lignin was more efficiently removed by hydrotropic pretreatment compared to ionic liquid or hydrothermal pretreatments. SEM analysis also found that already at room temperature the ionic liquid pretreatments were more effective in swelling the fibres compared with hydrotropic pretreatment at elevated temperatures. The enzymatic hydrolysis yield of hardwood was enhanced due to the decrease in surface coverage of lignin, which was induced by hydrotropic treatment. However, hydrotropic pretreatment was not appropriate for softwood because of the predominance of guaiacyl lignin structure in this material. In addition, the reduction of surface lignin and xylan during pretreatment and subsequent increase in cellulose hydrolysis by enzyme could be observed from ToF-SIMS results. The characterisation of the non-wood biomass (e.g. sugarcane bagasse and common reed) treated by hydrotropic method, alkaline and alkaline hydrogen peroxide pretreatments were carried out by XPS and ToF-SIMS. According to the results, the action for the removal of the surface lignin of non-wood biomass by hydrotropic pretreatment was more significant compared to alkaline and alkaline hydrogen peroxide pretreatments, although a higher total amount of lignin could be removed by alkaline and alkaline hydrogen peroxide pretreatment. Furthermore, xylan could be remarkably more efficiently removed by hydrotropic method. Therefore, the glucan yield achieved from hydrotropic treated sample was higher than that from samples treated with alkaline or alkaline hydrogen peroxide. Through the use of ToF-SIMS, the distribution and localization of lignin and carbohydrates on the surface of ignocelluloses during pretreatment and enzymatic hydrolysis could be detected, and xylan degradation during enzymatic hydrolysis could also be assessed. Thus, based on the results from XPS and ToF-SIMS, the mechanism of the hydrotropic pretreatment in improving the accessibility of enzymes to fibre and further ameliorating of the enzymatic saccharification could be better elucidated.
Resumo:
O objetivo deste trabalho foi avaliar a lixiviação de saflufenacil em Latossolo Vermelho-Amarelo (textura média, pH 5,6) e Latossolo Vermelho distrófico (textura argilosa, pH 5,2 e pH 6,0), assim como os efeitos de períodos de seca no residual desse herbicida. A lixiviação de saflufenacil (0,10 g i.a ha-1) e, adicionalmente, a lixiviação de diuron + hexazinone (1.170 + 330 g i.a. ha-1) foram avaliadas sob simulação de chuva (40 mm). O herbicida saflufenacil aplicado em solo argiloso com pH 6,0 apresentou lixiviação até a profundidade de 25 cm, porém ela foi mais pronunciada na faixa de 15 a 20 cm. Quando o herbicida foi aplicado no mesmo solo, mas com pH 5,2, houve lixiviação até a profundidade de 15 cm. Em solo de textura média, a lixiviação foi elevada até a profundidade de 25 cm. Para diuron+hexazinone, no solo argiloso, independentemente do pH, houve lixiviação até 25 cm de profundidade. Todavia, em solo de textura média a lixiviação ocorreu até 40 cm de profundidade. Em relação ao efeito residual do saflufenacil após períodos de seca (0, 15, 30, 45, 60 e 90 dias) em um Latossolo Vermelho distrófico (textura argilosa), foi verificado efeito fitotóxico no bioindicador maior ou igual a 80% até os 28 dias de seca.
Resumo:
As aplicações de herbicidas em pré-emergência têm por finalidade a obtenção da atividade residual no início do ciclo das culturas. Assim, o objetivo deste trabalho foi avaliar a atividade residual dos herbicidas diuron, oxyfluorfen e prometryne, aplicados isoladamente ou em misturas, no controle de Euphorbia heterophylla. Oito experimentos foram conduzidos em casa de vegetação, aplicando-se doses dos herbicidas ou das misturas aos 30, 20, 10 e 0 dias antes da semeadura da planta daninha (DAS). Com o diuron e prometryne, foram observados controles satisfatórios até 20 DAS nas doses a partir de 1,07 e 1,6 kg ha-1, respectivamente. Quanto ao oxyfluorfen, foi registrado um período residual inferior, obtendo-se controle mínimo de 80% até 10 DAS nas doses a partir de 0,324 kg ha-1. Em relação às misturas dos herbicidas, a mistura diuron+prometryne promoveu controle superior a 85% por períodos de até 30 dias, quando aplicada na menor dose (1+2 kg ha-1), e de 20 dias, quando aplicada na dose de 2+1 kg ha-1. Visando obter esse mesmo patamar de controle por 30 dias, foi necessário 1+0,288 kg ha-1 da mistura diuron+oxyfluorfen. A mistura prometryne+oxyfluorfen apresentou um mínimo de 80% de controle no período de 10 dias, quando utilizada a dose de 1+0,192 kg ha-1.
Resumo:
In order to reduce greenhouse emissions from forest degradation and deforestation the international programme REDD (Reducing Emissions from Deforestation and forest Degradation) was established in 2005 by the United Nations Framework Convention on Climate Change (UNFCCC). This programme is aimed to financially reward to developing countries for any emissions reductions. Under this programm the project of setting up the payment system in Nepal was established. This project is aimed to engage local communities in forest monitoring. The major objective of this thesis is to compare and verify data obtained from di erect sources - remotely sensed data, namely LiDAR and field sample measurements made by two groups of researchers using two regression models - Sparse Bayesian Regression and Bayesian Regression with Orthogonal Variables.
Resumo:
Valuable minerals can be recovered by using froth flotation. This is a widely used separation technique in mineral processing. In a flotation cell hydrophobic particles attach on air bubbles dispersed in the slurry and rise on the top of the cell. Valuable particles are made hydrophobic by adding collector chemicals in the slurry. With the help of a frother reagent a stable froth forms on the top of the cell and the froth with valuable minerals, i.e. the concentrate, can be removed for further processing. Normally the collector is dosed on the basis of the feed rate of the flotation circuit and the head grade of the valuable metal. However, also the mineral composition of the ore affects the consumption of the collector, i.e. how much is adsorbed on the mineral surfaces. Therefore it is worth monitoring the residual collector concentration in the flotation tailings. Excess usage of collector causes unnecessary costs and may even disturb the process. In the literature part of the Master’s thesis the basics of flotation process and collector chemicals are introduced. Capillary electrophoresis (CE), an analytical technique suitable for detecting collector chemicals, is also reviewed. In the experimental part of the thesis the development of an on-line CE method for monitoring the concentration of collector chemicals in a flotation process and the results of a measurement campaign are presented. It was possible to determine the quality and quantity of collector chemicals in nickel flotation tailings at a concentrator plant with the developed on-line CE method. Sodium ethyl xanthate and sodium isopropyl xanthate residuals were found in the tailings and slight correlation between the measured concentrations and the dosage amounts could be seen.
Resumo:
This study aimed to determine the selectivity of herbicides applied in pre- and post-emergence for alfalfa crops. Three separate experiments were carried out under greenhouse conditions. The first experiment was arranged in a completely randomized design with three replications in a 4 x 11 + 1 factorial scheme , with eleven herbicides (bentazon, chlorimuron-ethyl, fomesafen, fluazifop-p-butyl, saflufenacil, imazethapyr, clethodim, nicosulfuron, imazaquin, haloxyfop-methyl and MSMA), four doses of each herbicide (0.5 D, 0.75 D, 1.0 D and 1.25 D, where D = recommended dose), plus an untreated control. The products were applied to alfalfa plants at the stage of 4 to 5 leaf pairs. In the second experiment, the effect of pre-emergent herbicides on early alfalfa development was observed through a completely randomized design with five replications in a 3 x 4 x 2 factorial scheme, with three herbicides (hexazinone, atrazine + simazine, S-metolachlor), four doses (0.5 D, 0.75 D, 1.0 D and 1.25 D), and two types of soil texture (loamy and clay soil), plus an untreated control. The third experiment evaluated the action of atrazine, 2,550 g ha-1; clomazone - 600 g ha-1; diclosulam - 25 g ha-1; diuron+hexazinone - 936 + 264 g ha-1 and diuron+hexazinone +sulfometuron - 1,386 + 391 + 33.35 g ha-1 on alfalfa sown at different times after herbicide application. The effects of the treatments on alfalfa were evaluated according to visual phytotoxicity symptoms, plant height, and biomass of roots and shoots. Among the herbicides applied at post-emergence, imazethapyr, clethodim, haloxyfop-p-methyl and MSMA were selective for alfalfa, while among those applied at pre-emergence, none were selective, regardless of soil texture. The results of the third experiment showed that the herbicides diclosulam, hexazinone + diuron and atrazine caused less toxicity in alfalfa plants.
Resumo:
In agricultural production systems where the glyphosate-resistant soybean crop (Glycine max) is grown and the practice of crop rotation with alternative herbicides is not adopted, the exclusive and continuous use of glyphosate has led to the occurrence of resistant weed populations that may limit or compromise the benefits of this technology. Thus, the efficacy of weed management programs, including the use of residual herbicides (sulfentrazone, flumioxazin, imazethapyr, diclosulan, chlorimuron and s-metolachlor) applied in preemergence and followed by in-crop postemergence applications of glyphosate (PRE-POST) were compared to glyphosate postemergence only programs - POST. The study was conducted across nine locations during the 2009/2010 and 2010/2011 growing seasons. PRE-POST programs were efficient in the control of Amaranthus viridis, Brachiaria plantaginea, Bidens pilosa, Commelina benghalensis, Eleusine indica, Euphorbia heterophylla and Raphanus raphanistrum, with the level of control being similar when comparing the program with two applications of glyphosate POST. Some PRE-POST programs were not efficient in controlling Cenchrus echinatus, Ipomoea hederifolia and Ipomoea triloba. Sulfentrazone and diclosulam PRE-POST programs improved the control of Ipomoea triloba compared to sequential applications of glyphosate alone. No significant differences in soybean yield were observed between any of the herbicide treatments or study locations. The use of residual herbicides in preemergence followed by glyphosate in-crop postemergence provides consistent weed control and reducing early season weed competition. Furthermore, these programs utilize at least two herbicide modes of action for herbicide use diversity, which will be needed to stay ahead of resistance build-up, regardless of when weeds may appear.
Resumo:
Avaliou-se a eficiência de herbicidas na cultura do feijão e a possível ação residual desses produtos sobre as culturas de sorgo e de milho cultivadas em sucessão. O experimento foi realizado em campo e em casa de vegetação, avaliando-se os seguintes tratamentos: fomesafen (250 g L-1) e a mistura comercial de bentazon e imazamox (600 g L‑1 + 28 g L-1) nas doses de 25, 50, 75 e 100% da dose recomendada dos respectivos produtos comerciais, bem como a mistura em tanque desses herbicidas nas proporções de 75 + 25, 50 + 50 e 25 + 0,75%, além de duas testemunhas: uma capinada e outra sem capina. O fomesafen na dose de 250 g ha-1 proporcionou boa produtividade de feijão, porém prejudicou o crescimento de plantas de sorgo nas amostras de solo coletadas até 183 dias após a aplicação (DAA), indicando grande persistência do herbicida. No solo coletado aos 153 DAA, observou-se intoxicação nas plantas de milho, mas não houve influência no acúmulo de matéria seca da parte aérea nem na produção de grãos. A mistura pronta de bentazon e imazamox não foi eficiente no controle de plantas daninhas até a colheita do feijão. Contudo, quando a essa mistura adicionou-se o fomesafen, houve redução da dose do fomesafen em 75%, com ótimo controle de plantas daninhas e fácil condição de colheita do feijão, além de menor risco de carryover em plantas de sorgo e de milho. A persistência do fomesafen no solo não foi alterada com a mistura em tanque de bentazon e imazamox.
Resumo:
Growing concerns about toxicity and development of resistance against synthetic herbicides have demanded looking for alternative weed management approaches. Allelopathy has gained sufficient support and potential for sustainable weed management. Aqueous extracts of six plant species (sunflower, rice, mulberry, maize, brassica and sorghum) in different combinations alone or in mixture with 75% reduced dose of herbicides were evaluated for two consecutive years under field conditions. A weedy check and S-metolachlor with atrazine (pre emergence) and atrazine alone (post emergence) at recommended rates was included for comparison. Weed dynamics, maize growth indices and yield estimation were done by following standard procedures. All aqueous plant extract combinations suppressed weed growth and biomass. Moreover, the suppressive effect was more pronounced when aqueous plant extracts were supplemented with reduced doses of herbicides. Brassica-sunflower-sorghum combination suppressed weeds by 74-80, 78-70, 65-68% during both years of study that was similar with S-metolachlor along half dose of atrazine and full dose of atrazine alone. Crop growth rate and dry matter accumulation attained peak values of 32.68 and 1,502 g m-2 d-1 for brassica-sunflower-sorghum combination at 60 and 75 days after sowing. Curve fitting regression for growth and yield traits predicted strong positive correlation to grain yield and negative correlation to weed dry biomass under allelopathic weed management in maize crop.
Resumo:
The dynamics of forests subject to inundation appears to be strongly influenced by the frequency and intensity of natural disturbances such as flooding. In a late successional tidal floodplain forest near the Amazon port of Belém, Brazil, we tested this prediction by measuring seasonal patterns of phenology and litterfall in relation to two key variables: rainfall and tide levels. In addition, we estimated the root biomass and the annual growth of the forest community by measuring stem increments over time. Our results showed high correlations between phenological events (flowering and fruiting) and rainfall and tide levels, while correlations between litterfall and these variations were generally weaker. Contrary to our prediction, root biomass to 1 m depth showed no significant differences along the topographic gradient, and the root biomass at all topographic levels was low to intermediate compared with other neotropical forests. Both litterfall and total stem increment were high compared to other tropical forest, indicating the high productivity of this ecosystem.
Resumo:
Nutrient impoverishment in mesocosms was carried out in a shallow eutrophic reservoir aiming to evaluate the nutrient removal technique as a method for eutrophication reduction. Garças Pond is located in the Parque Estadual das Fontes do Ipiranga Biological Reserve situated in the southeast region of the municipality of São Paulo. Three different treatments were designed, each consisting of two enclosures containing 360 liters of water each. Mesocosms were made of polyethylene bags and PVC pipes, and were attached to the lake bottom. Treatment dilutions followed Carlson's trophic state index modified by Toledo and collaborators, constituting the oligotrophic, mesotrophic, and eutrophic treatments. Ten abiotic and 9 biological samplings were carried out simultaneously. Trophic states previously calculated for the treatments were kept unaltered during the entire experiment period, except for the mesotrophic mesocosms in which TP reached oligotrophic concentrations on the 31st day of the experiment. In all three treatments a reduction of DO was observed during the study period. At the same time, NH4+ and free CO2 rose, indicating decomposition within the enclosures. Nutrient impoverishment caused P limitation in all three treatments during most of the experiment period. Reduction of algal density, chlorophyll a, and phaeophytin was observed in all treatments. Competition for nutrients led to changes in phytoplankton composition. Once isolated and diluted, the mesocosms' trophic state did not change. This led to the conclusion that isolation of the allochthonous sources of nutrients is the first step for the recovery of the Garças Pond.
Resumo:
Remote monitoring of a power boiler allows the supplying company to make sure that equipment is used as supposed to and gives a good chance for process optimization. This improves co-operation between the supplier and the customer and creates an aura of trust that helps securing future contracts. Remote monitoring is already in use with recovery boilers but the goal is to expand especially to biomass-fired BFB-boilers. To make remote monitoring possible, data has to be measured reliably on site and the link between the power plant and supplying company’s server has to work reliably. Data can be gathered either with the supplier’s sensors or with measurements originally installed in the power plant if the plant in question is not originally built by the supplying company. Main goal in remote monitoring is process optimization and avoiding unnecessary accidents. This can be achieved for instance by following the efficiency curves and fouling in different parts of the process and comparing them to past values. The final amount of calculations depends on the amount of data gathered. Sudden changes in efficiency or fouling require further notice and in such a case it’s important that dialogue toward the power plant in question also works.