986 resultados para neural representations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans are particularly adept at modifying their behavior in accordance with changing environmental demands. Through various mechanisms of cognitive control, individuals are able to tailor actions to fit complex short- and long-term goals. The research described in this thesis uses functional magnetic resonance imaging to characterize the neural correlates of cognitive control at two levels of complexity: response inhibition and self-control in intertemporal choice. First, we examined changes in neural response associated with increased experience and skill in response inhibition; successful response inhibition was associated with decreased neural response over time in the right ventrolateral prefrontal cortex, a region widely implicated in cognitive control, providing evidence for increased neural efficiency with learned automaticity. We also examined a more abstract form of cognitive control using intertemporal choice. In two experiments, we identified putative neural substrates for individual differences in temporal discounting, or the tendency to prefer immediate to delayed rewards. Using dynamic causal models, we characterized the neural circuit between ventromedial prefrontal cortex, an area involved in valuation, and dorsolateral prefrontal cortex, a region implicated in self-control in intertemporal and dietary choice, and found that connectivity from dorsolateral prefrontal cortex to ventromedial prefrontal cortex increases at the time of choice, particularly when delayed rewards are chosen. Moreover, estimates of the strength of connectivity predicted out-of-sample individual rates of temporal discounting, suggesting a neurocomputational mechanism for variation in the ability to delay gratification. Next, we interrogated the hypothesis that individual differences in temporal discounting are in part explained by the ability to imagine future reward outcomes. Using a novel paradigm, we imaged neural response during the imagining of primary rewards, and identified negative correlations between activity in regions associated the processing of both real and imagined rewards (lateral orbitofrontal cortex and ventromedial prefrontal cortex, respectively) and the individual temporal discounting parameters estimated in the previous experiment. These data suggest that individuals who are better able to represent reward outcomes neurally are less susceptible to temporal discounting. Together, these findings provide further insight into role of the prefrontal cortex in implementing cognitive control, and propose neurobiological substrates for individual variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A neural network is a highly interconnected set of simple processors. The many connections allow information to travel rapidly through the network, and due to their simplicity, many processors in one network are feasible. Together these properties imply that we can build efficient massively parallel machines using neural networks. The primary problem is how do we specify the interconnections in a neural network. The various approaches developed so far such as outer product, learning algorithm, or energy function suffer from the following deficiencies: long training/ specification times; not guaranteed to work on all inputs; requires full connectivity.

Alternatively we discuss methods of using the topology and constraints of the problems themselves to design the topology and connections of the neural solution. We define several useful circuits-generalizations of the Winner-Take-All circuitthat allows us to incorporate constraints using feedback in a controlled manner. These circuits are proven to be stable, and to only converge on valid states. We use the Hopfield electronic model since this is close to an actual implementation. We also discuss methods for incorporating these circuits into larger systems, neural and nonneural. By exploiting regularities in our definition, we can construct efficient networks. To demonstrate the methods, we look to three problems from communications. We first discuss two applications to problems from circuit switching; finding routes in large multistage switches, and the call rearrangement problem. These show both, how we can use many neurons to build massively parallel machines, and how the Winner-Take-All circuits can simplify our designs.

Next we develop a solution to the contention arbitration problem of high-speed packet switches. We define a useful class of switching networks and then design a neural network to solve the contention arbitration problem for this class. Various aspects of the neural network/switch system are analyzed to measure the queueing performance of this method. Using the basic design, a feasible architecture for a large (1024-input) ATM packet switch is presented. Using the massive parallelism of neural networks, we can consider algorithms that were previously computationally unattainable. These now viable algorithms lead us to new perspectives on switch design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The visual system is a remarkable platform that evolved to solve difficult computational problems such as detection, recognition, and classification of objects. Of great interest is the face-processing network, a sub-system buried deep in the temporal lobe, dedicated for analyzing specific type of objects (faces). In this thesis, I focus on the problem of face detection by the face-processing network. Insights obtained from years of developing computer-vision algorithms to solve this task have suggested that it may be efficiently and effectively solved by detection and integration of local contrast features. Does the brain use a similar strategy? To answer this question, I embark on a journey that takes me through the development and optimization of dedicated tools for targeting and perturbing deep brain structures. Data collected using MR-guided electrophysiology in early face-processing regions was found to have strong selectivity for contrast features, similar to ones used by artificial systems. While individual cells were tuned for only a small subset of features, the population as a whole encoded the full spectrum of features that are predictive to the presence of a face in an image. Together with additional evidence, my results suggest a possible computational mechanism for face detection in early face processing regions. To move from correlation to causation, I focus on adopting an emergent technology for perturbing brain activity using light: optogenetics. While this technique has the potential to overcome problems associated with the de-facto way of brain stimulation (electrical microstimulation), many open questions remain about its applicability and effectiveness for perturbing the non-human primate (NHP) brain. In a set of experiments, I use viral vectors to deliver genetically encoded optogenetic constructs to the frontal eye field and faceselective regions in NHP and examine their effects side-by-side with electrical microstimulation to assess their effectiveness in perturbing neural activity as well as behavior. Results suggest that cells are robustly and strongly modulated upon light delivery and that such perturbation can modulate and even initiate motor behavior, thus, paving the way for future explorations that may apply these tools to study connectivity and information flow in the face processing network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decade, research efforts into directly interfacing with the neurons of individuals with motor deficits have increased. The goal of such research is clear: Enable individuals affected by paralysis or amputation to regain control of their environments by manipulating external devices with thought alone. Though the motor cortices are the usual brain areas upon which neural prosthetics depend, research into the parietal lobe and its subregions, primarily in non-human primates, has uncovered alternative areas that could also benefit neural interfaces. Similar to the motor cortical areas, parietal regions can supply information about the trajectories of movements. In addition, the parietal lobe also contains cognitive signals like movement goals and intentions. But, these areas are also known to be tuned to saccadic eye movements, which could interfere with the function of a prosthetic designed to capture motor intentions only. In this thesis, we develop and examine the functionality of a neural prosthetic with a non-human primate model using the superior parietal lobe to examine the effectiveness of such an interface and the effects of unconstrained eye movements in a task that more closely simulates clinical applications. Additionally, we examine methods for improving usability of such interfaces.

The parietal cortex is also believed to contain neural signals relating to monitoring of the state of the limbs through visual and somatosensory feedback. In one of the world’s first clinical neural prosthetics based on the human parietal lobe, we examine the extent to which feedback regarding the state of a movement effector alters parietal neural signals and what the implications are for motor neural prosthetics and how this informs our understanding of this area of the human brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies Frobenius traces in Galois representations from two different directions. In the first problem we explore how often they vanish in Artin-type representations. We give an upper bound for the density of the set of vanishing Frobenius traces in terms of the multiplicities of the irreducible components of the adjoint representation. Towards that, we construct an infinite family of representations of finite groups with an irreducible adjoint action.

In the second problem we partially extend for Hilbert modular forms a result of Coleman and Edixhoven that the Hecke eigenvalues ap of classical elliptical modular newforms f of weight 2 are never extremal, i.e., ap is strictly less than 2[square root]p. The generalization currently applies only to prime ideals p of degree one, though we expect it to hold for p of any odd degree. However, an even degree prime can be extremal for f. We prove our result in each of the following instances: when one can move to a Shimura curve defined by a quaternion algebra, when f is a CM form, when the crystalline Frobenius is semi-simple, and when the strong Tate conjecture holds for a product of two Hilbert modular surfaces (or quaternionic Shimura surfaces) over a finite field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A grating-lens combination unit is developed to form a scaling self-transform function that can self-image on scale. Then an array of many such grating-lens units is used for the optical interconnection of a two-dimensional neural network, and experiments are carried out. We find that our idea is feasible, the optical interconnection system is simple, and optical adjustment is easy. (C) 1998 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nesta dissertação, foi utilizada a técnica SIFT (Scale Invariant Feature Transform) para o reconhecimento de imagens da área dos olhos (região periorbital). Foi implementada uma classificação das imagens em subgrupos internos ao banco de dados, utilizando-se das informações estatísticas provenientes dos padrões invariantes produzidos pela técnica SIFT. Procedeu-se a uma busca categorizada pelo banco de dados, ao invés da procura de um determinado padrão apresentado, através da comparação deste com cada padrão presente no banco de dados. A tais padrões foi aplicada uma abordagem estatística, através da geração da matriz de covariâncias dos padrões gerados, sendo esta utilizada para a categorização, tendo por base uma rede neural híbrida. A rede neural classifica e categoriza o banco de dados de imagens, criando uma topologia de busca. Foram obtidos resultados corretos de classificação de 76,3% pela rede neural híbrida, sendo que um algoritmo auxiliar determina uma hierarquia de busca, onde, ocorrendo uma errônea classificação, a busca segue em grupos de pesquisas mais prováveis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of neural signals have been measured as correlates to consciousness. In particular, late current sinks in layer 1, distributed activity across the cortex, and feedback processing have all been implicated. What are the physiological underpinnings of these signals? What computational role do they play in the brain? Why do they correlate to consciousness? This thesis begins to answer these questions by focusing on the pyramidal neuron. As the primary communicator of long-range feedforward and feedback signals in the cortex, the pyramidal neuron is set up to play an important role in establishing distributed representations. Additionally, the dendritic extent, reaching layer 1, is well situated to receive feedback inputs and contribute to current sinks in the upper layers. An investigation of pyramidal neuron physiology is therefore necessary to understand how the brain creates, and potentially uses, the neural correlates of consciousness. An important part of this thesis will be in establishing the computational role that dendritic physiology plays. In order to do this, a combined experimental and modeling approach is used.

This thesis beings with single-cell experiments in layer 5 and layer 2/3 pyramidal neurons. In both cases, dendritic nonlinearities are characterized and found to be integral regulators of neural output. Particular attention is paid to calcium spikes and NMDA spikes, which both exist in the apical dendrites, considerable distances from the spike initiation zone. These experiments are then used to create detailed multicompartmental models. These models are used to test hypothesis regarding spatial distribution of membrane channels, to quantify the effects of certain experimental manipulations, and to establish the computational properties of the single cell. We find that the pyramidal neuron physiology can carry out a coincidence detection mechanism. Further abstraction of these models reveals potential mechanisms for spike time control, frequency modulation, and tuning. Finally, a set of experiments are carried out to establish the effect of long-range feedback inputs onto the pyramidal neuron. A final discussion then explores a potential way in which the physiology of pyramidal neurons can establish distributed representations, and contribute to consciousness.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurons obtained directly from human somatic cells hold great promise for disease modeling and drug screening. Available protocols rely on overexpression of transcription factors using integrative vectors and are often slow, complex, and inefficient. We report a fast and efficient approach for generating induced neural cells (iNCs) directly from human hematopoietic cells using Sendai virus. Upon SOX2 and c-MYC expression, CD133-positive cord blood cells rapidly adopt a neuroepithelial morphology and exhibit high expansion capacity. Under defined neurogenic culture conditions, they express mature neuronal markers and fire spontaneous action potentials that can be modulated with neurotransmitters. SOX2 and c-MYC are also sufficient to convert peripheral blood mononuclear cells into iNCs. However, the conversion process is less efficient and resulting iNCs have limited expansion capacity and electrophysiological activity upon differentiation. Our study demonstrates rapid and efficient generation of iNCs from hematopoietic cells while underscoring the impact of target cells on conversion efficiency.