758 resultados para neural network model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As indústrias têm buscado constantemente reduzir gastos operacionais, visando o aumento do lucro e da competitividade. Para alcançar essa meta, são necessários, dentre outros fatores, o projeto e a implantação de novas ferramentas que permitam o acesso às informações relevantes do processo de forma precisa, eficiente e barata. Os sensores virtuais têm sido aplicados cada vez mais nas indústrias. Por ser flexível, ele pode ser adaptado a qualquer tipo de medição, promovendo uma redução de custos operacionais sem comprometer, e em alguns casos até melhorar, a qualidade da informação gerada. Como estão totalmente baseados em software, não estão sujeitos a danos físicos como os sensores reais, além de permitirem uma melhor adaptação a ambientes hostis e de difícil acesso. A razão do sucesso destes tipos de sensores é a utilização de técnicas de inteligência computacional, as quais têm sido usadas na modelagem de vários processos não lineares altamente complexos. Este trabalho tem como objetivo estimar a qualidade da alumina fluoretada proveniente de uma Planta de Tratamento de Gases (PTG), a qual é resultado da adsorção de gases poluentes em alumina virgem, via sensor virtual. O modelo que emula o comportamento de um sensor de qualidade de alumina foi criado através da técnica de inteligência computacional conhecida como Rede Neural Artificial. As motivações deste trabalho consistem em: realizar simulações virtuais, sem comprometer o funcionamento da PTG; tomar decisões mais precisas e não baseada somente na experiência do operador; diagnosticar potenciais problemas, antes que esses interfiram na qualidade da alumina fluoretada; manter o funcionamento do forno de redução de alumínio dentro da normalidade, pois a produção de alumina de baixa qualidade afeta a reação de quebra da molécula que contém este metal. Os benefícios que este projeto trará consistem em: aumentar a eficiência da PTG, produzindo alumina fluoretada de alta qualidade e emitindo menos gases poluentes na atmosfera, além de aumentar o tempo de vida útil do forno de redução.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A correlação estratigráfica busca a determinação da continuidade lateral das rochas, ou a equivalência espacial entre unidades litológicas em subsuperfície, a partir de informações geológico-geofísicas oriundas de poços tubulares, que atravessam estas rochas. Normalmente, mas não exclusivamente, a correlação estratigráfica é realizada a partir das propriedades físicas registradas nos perfis geofísicos de poço. Neste caso, busca-se a equivalência litológica a partir da equivalência entre as propriedades físicas, medidas nos vários poços de um campo petrolífero. A técnica da correlação estratigráfica com perfis geofísicos de poço não é uma atividade trivial e sim, sujeita a inúmeras possibilidades de uma errônea interpretação da disposição geométrica ou da continuidade lateral das rochas em subsuperfície, em função da variabilidade geológica e da ambigüidade das respostas das ferramentas. Logo, é recomendável a utilização de um grande número de perfis de um mesmo poço, para uma melhor interpretação. A correlação estratigráfica é fundamental para o engenheiro de reservatório ou o geólogo, pois a partir da mesma, é possível a definição de estratégias de explotação de um campo petrolífero e a interpretação das continuidades hidráulicas dos reservatórios, bem como auxílio para a construção do modelo geológico para os reservatórios, a partir da interpretação do comportamento estrutural das diversas camadas em subsuperfície. Este trabalho apresenta um método de automação das atividades manuais envolvidas na correlação estratigráfica, com a utilização de vários perfis geofísicos de poço, através de uma arquitetura de rede neural artificial multicamadas, treinada com o algoritmo de retropropagação do erro. A correlação estratigráfica, obtida a partir da rede neural artificial, possibilita o transporte da informação geológica do datum de correlação ao longo do campo, possibilitando ao intérprete, uma visão espacial do comportamento do reservatório e a simulação dos possíveis paleoambientes. Com a metodologia aqui apresentada foi possível a construção automática de um bloco diagrama, mostrando a disposição espacial de uma camada argilosa, utilizando-se os perfis de Raio Gama (RG), Volume de Argila (Vsh), Densidade (ρb) e de Porosidade Neutrônica (φn) selecionados em cinco poços da região do Lago Maracaibo, na Venezuela.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As redes neurais artificiais têm provado serem uma poderosa técnica na resolução de uma grande variedade de problemas de otimização. Nesta dissertação é desenvolvida uma nova rede neural, tipo recorrente, sem realimentação (self-feedback loops) e sem neurônios ocultos, para o processamento do sinal sísmico, para fornecer a posição temporal, a polaridade e as amplitudes estimadas dos refletores sísmicos, representadas pelos seus coeficientes de reflexão. A principal característica dessa nova rede neural consiste no tipo de função de ativação utilizada, a qual permite três possíveis estados para o neurônio. Busca-se estimar a posição dos refletores sísmicos e reproduzir as verdadeiras polaridades desses refletores. A idéia básica desse novo tipo de rede, aqui denominada rede neural discreta (RND), é relacionar uma função objeto, que descreve o problema geofísico, com a função de Liapunov, que descreve a dinâmica da rede neural. Deste modo, a dinâmica da rede leva a uma minimização local da sua função de Liapunov e consequentemente leva a uma minimização da função objeto. Assim, com uma codificação conveniente do sinal de saída da rede tem-se uma solução do problema geofísico. A avaliação operacional da arquitetura desta rede neural artificial é realizada em dados sintéticos gerados através do modelo convolucional simples e da teoria do raio. A razão é para explicar o comportamento da rede com dados contaminados por ruído, e diante de pulsos fonte de fases mínima, máxima e misturada.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aimed to compare the predictive capacity of empirical models, based on the uniform design utilization combined to artificial neural networks with respect to classical factorial designs in bioprocess, using as example the rabies virus replication in BHK-21 cells. The viral infection process parameters under study were temperature (34°C, 37°C), multiplicity of infection (0.04, 0.07, 0.1), times of infection, and harvest (24, 48, 72 hours) and the monitored output parameter was viral production. A multilevel factorial experimental design was performed for the study of this system. Fractions of this experimental approach (18, 24, 30, 36 and 42 runs), defined according uniform designs, were used as alternative for modelling through artificial neural network and thereafter an output variable optimization was carried out by means of genetic algorithm methodology. Model prediction capacities for all uniform design approaches under study were better than that found for classical factorial design approach. It was demonstrated that uniform design in combination with artificial neural network could be an efficient experimental approach for modelling complex bioprocess like viral production. For the present study case, 67% of experimental resources were saved when compared to a classical factorial design approach. In the near future, this strategy could replace the established factorial designs used in the bioprocess development activities performed within biopharmaceutical organizations because of the improvements gained in the economics of experimentation that do not sacrifice the quality of decisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study introduces a new regression model developed to estimate the hourly values of diffuse solar radiation at the surface. The model is based on the clearness index and diffuse fraction relationship, and includes the effects of cloud (cloudiness and cloud type), traditional meteorological variables (air temperature, relative humidity and atmospheric pressure observed at the surface) and air pollution (concentration of particulate matter observed at the surface). The new model is capable of predicting hourly values of diffuse solar radiation better than the previously developed ones (R-2 = 0.93 and RMSE = 0.085). A simple version with a large applicability is proposed that takes into consideration cloud effects only (cloudiness and cloud height) and shows a R-2 = 0.92. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occupational exposure limits of different risk factors for development of low back disorders (LBDs) have not yet been established. One of the main problems in setting such guidelines is the limited understanding of how different risk factors for LBDs interact in causing injury, since the nature and mechanism of these disorders are relatively unknown phenomena. Industrial ergonomists' role becomes further complicated because the potential risk factors that may contribute towards the onset of LBDs interact in a complex manner, which makes it difficult to discriminate in detail among the jobs that place workers at high or low risk of LBDs. The purpose of this paper was to develop a comparative study between predictions based on the neural network-based model proposed by Zurada, Karwowski & Marras (1997) and a linear discriminant analysis model, for making predictions about industrial jobs according to their potential risk of low back disorders due to workplace design. The results obtained through applying the discriminant analysis-based model proved that it is as effective as the neural network-based model. Moreover, the discriminant analysis-based model proved to be more advantageous regarding cost and time savings for future data gathering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semisupervised learning is a machine learning approach that is able to employ both labeled and unlabeled samples in the training process. In this paper, we propose a semisupervised data classification model based on a combined random-preferential walk of particles in a network (graph) constructed from the input dataset. The particles of the same class cooperate among themselves, while the particles of different classes compete with each other to propagate class labels to the whole network. A rigorous model definition is provided via a nonlinear stochastic dynamical system and a mathematical analysis of its behavior is carried out. A numerical validation presented in this paper confirms the theoretical predictions. An interesting feature brought by the competitive-cooperative mechanism is that the proposed model can achieve good classification rates while exhibiting low computational complexity order in comparison to other network-based semisupervised algorithms. Computer simulations conducted on synthetic and real-world datasets reveal the effectiveness of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The instability of river bank can result in considerable human and land losses. The Po river is the most important in Italy, characterized by main banks of significant and constantly increasing height. This study presents multilayer perceptron of artificial neural network (ANN) to construct prediction models for the stability analysis of river banks along the Po River, under various river and groundwater boundary conditions. For this aim, a number of networks of threshold logic unit are tested using different combinations of the input parameters. Factor of safety (FS), as an index of slope stability, is formulated in terms of several influencing geometrical and geotechnical parameters. In order to obtain a comprehensive geotechnical database, several cone penetration tests from the study site have been interpreted. The proposed models are developed upon stability analyses using finite element code over different representative sections of river embankments. For the validity verification, the ANN models are employed to predict the FS values of a part of the database beyond the calibration data domain. The results indicate that the proposed ANN models are effective tools for evaluating the slope stability. The ANN models notably outperform the derived multiple linear regression models.