984 resultados para music perception
Resumo:
The visual analysis of surface shape from texture and surface contour is treated within a computational framework. The aim of this study is to determine valid constraints that are sufficient to allow surface orientation and distance (up to a multiplicative constant) to be computed from the image of surface texture and of surface contours.
Resumo:
Purpose – The purpose of this paper is twofold. The first aim is to obtain a valid and reliable instrument for the holistic analysis of sporting events, and the second is to test a causal model in which future intentions depend on spectators’ perceptions of quality, satisfaction, and value of these events. Design/methodology/approach – A total of 493 spectators of a professional basketball team in the Spanish ACB league responded to a survey to measure the overall performance of the sporting event service. Exploratory factor analysis and further confirmatory factor analysis using structural equation models provides the methodology for testing the reliability and validity of the instrument. Findings – The scales have adequate reliability and validity indices. The path model explains 35.8 percent of the variance in future intentions, 54.0 percent in perceived value, and 49.5 percent in spectators’ satisfaction. Quality proves a better predictor of perceived value than satisfaction. Both perceived value and satisfaction have a similar weight in predicting spectators’ future intentions. The data indicate that quality has an effect on spectators’ future intentions, by altering their perceptions of value and satisfaction. Research limitations/implications – The research findings are somewhat limited, due to the sample consisting entirely of spectators of a single team in the Spanish ACB league. Practical implications – Managers can use these findings to develop loyalty strategies by creating service value and increasing spectators’ satisfaction through quality improvements. Originality/value – This study contributes to the literature on service quality by providing an overall measure to assess service in professional sporting events in a Latin-American context.
Resumo:
X. Zhang and M.H. Lee, 'From Perception to Cognition of Objects', Proceedings of Towards Autonomous Robotic Systems, (TAROS-06), pp 262-67, University of Guildford, Surrey, 2006.
Resumo:
Real-time adaptive music is now well-established as a popular medium, largely through its use in video game soundtracks. Commercial packages, such as fmod, make freely available the underlying technical methods for use in educational contexts, making adaptive music technologies accessible to students. Writing adaptive music, however, presents a significant learning challenge, not least because it requires a different mode of thought, and tutor and learner may have few mutual points of connection in discovering and understanding the musical drivers, relationships and structures in these works. This article discusses the creation of ‘BitBox!’, a gestural music interface designed to deconstruct and explain the component elements of adaptive composition through interactive play. The interface was displayed at the Dare Protoplay games exposition in Dundee in August 2014. The initial proof-of- concept study proved successful, suggesting possible refinements in design and a broader range of applications.
Resumo:
Anno Mungen focuses on “films made for music” and on the rare phenomenon of ‘music depicted by picture’ (S. Kracauer). The narration about historical metamorphoses of varied forms of coexistence between music and picture is accompanied by a reflection on the laws of audiovisual perception. The main examples are discussed, these concentrating on the artistic ideas of Walt Disney’s animated film Fantasia and – first of all – on Edgard Varèse’s bold ideal of spatial music, attained post mortem in Bill Viola’s Déserts (1994). After a detailed analysis of Viola’s film the author admits that the movie pictures deduced from music are able to render the latter its own substantial visual power.
Resumo:
The musicological tradition places Liszt’s Sonata in B minor within the sphere of compositions inspired by the Faustian myth. Its musical material, its structure and its narrative exhibit certain similarities to the ‘Faust’ Symphony. Yet there has appeared a diff erent and, one may say, a rival interpretation of Sonata in B minor. What is more, it is well-documented from both a musical and a historical point of view. It has been presented by Hungarian pianist and musicologist Tibor Szász. He proposes the thesis that the Sonata in B minor has been in fact inspired by Milton’s Paradise Lost, with its three protagonists: Adam, Satan and Christ. He fi nds their illustrations and even some key elements of the plot in the Sonata’s narrative. But yet Milton’s Paradise Lost and Goethe’s Faust are both stories of the Fall and Salvation, of the cosmic struggle between good and evil. The triads of their protagonists – Adam and Eve, Satan, and Christ; Faust, Mephisto and Gretchen – are homological. Thus both interpretations of the Sonata, the Goethean and the Miltonian, or, in other words, the Faustian and the Luciferian, are parallel and complementary rather than rival. It is also highly probable that both have had their impact on the genesis of the Sonata in B minor.
Resumo:
Abstract unavailable.
Resumo:
This project investigates how religious music, invested with symbolic and cultural meaning, provided African Americans in border city churches with a way to negotiate conflict, assert individual values, and establish a collective identity in the post- emancipation era. In order to focus on the encounter between former slaves and free Blacks, the dissertation examines black churches that received large numbers of southern migrants during and after the Civil War. Primarily a work of history, the study also employs insights and conceptual frameworks from other disciplines including anthropology and ritual studies, African American studies, aesthetic theory, and musicology. It is a work of historical reconstruction in the tradition of scholarship that some have called "lived religion." Chapter 1 introduces the dissertation topic and explains how it contributes to scholarship. Chapter 2 examines social and religious conditions African Americans faced in Baltimore, MD, Philadelphia, PA, and Washington, DC to show why the Black Church played a key role in African Americans' adjustment to post-emancipation life. Chapter 3 compares religious slave music and free black church music to identify differences and continuities between them, as well as their functions in religious settings. Chapters 4, 5, and 6 present case studies on Bethel African Methodist Episcopal Church (Baltimore), Zoar Methodist Episcopal Church (Philadelphia), and St. Luke’s Protestant Episcopal Church (Washington, DC), respectively. Informed by fresh archival materials, the dissertation shows how each congregation used its musical life to uphold values like education and community, to come to terms with a shared experience, and to confront or avert authority when cultural priorities were threatened. By arguing over musical choices or performance practices, or agreeing on mutually appealing musical forms like the gospel songs of the Sunday school movement, African Americans forged lively faith communities and distinctive cultures in otherwise adverse environments. The study concludes that religious music was a crucial form of African American discourse and expression in the post-emancipation era. In the Black Church, it nurtured an atmosphere of exchange, gave structure and voice to conflict, helped create a public sphere, and upheld the values of black people.
Resumo:
The therapeutic effects of playing music are being recognized increasingly in the field of rehabilitation medicine. People with physical disabilities, however, often do not have the motor dexterity needed to play an instrument. We developed a camera-based human-computer interface called "Music Maker" to provide such people with a means to make music by performing therapeutic exercises. Music Maker uses computer vision techniques to convert the movements of a patient's body part, for example, a finger, hand, or foot, into musical and visual feedback using the open software platform EyesWeb. It can be adjusted to a patient's particular therapeutic needs and provides quantitative tools for monitoring the recovery process and assessing therapeutic outcomes. We tested the potential of Music Maker as a rehabilitation tool with six subjects who responded to or created music in various movement exercises. In these proof-of-concept experiments, Music Maker has performed reliably and shown its promise as a therapeutic device.
Resumo:
A model of laminar visual cortical dynamics proposes how 3D boundary and surface representations of slated and curved 3D objects and 2D images arise. The 3D boundary representations emerge from interactions between non-classical horizontal receptive field interactions with intracorticcal and intercortical feedback circuits. Such non-classical interactions contextually disambiguate classical receptive field responses to ambiguous visual cues using cells that are sensitive to angles and disparity gradients with cortical areas V1 and V2. These cells are all variants of bipole grouping cells. Model simulations show how horizontal connections can develop selectively to angles, how slanted surfaces can activate 3D boundary representations that are sensitive to angles and disparity gradients, how 3D filling-in occurs across slanted surfaces, how a 2D Necker cube image can be represented in 3D, and how bistable Necker cuber percepts occur. The model also explains data about slant aftereffects and 3D neon color spreading. It shows how habituative transmitters that help to control developement also help to trigger bistable 3D percepts and slant aftereffects, and how attention can influence which of these percepts is perceived by propogating along some object boundaries.
Resumo:
The perception of a glossy surface in a static monochromatic image can occur when a bright highlight is embedded in a compatible context of shading and a bounding contour. Some images naturally give rise to the impression that a surface has a uniform reflectance, characteristic of a shiny object, even though the highlight may only cover a small portion of the surface. Nonetheless, an observer may adopt an attitude of scrutiny in viewing a glossy surface, whereby the impression of gloss is partial and nonuniform at image regions outside of a higlight. Using a rating scale and small probe points to indicate image locations, differential perception of gloss within a single object is investigate in the present study. Observers' gloss ratings are not uniform across the surface, but decrease as a function of distance from highlight. When, by design, the distance from a highlight is uncoupled from the luminance value at corresponding probe points, the decrease in rated gloss correlates more with the distance than with the luminance change. Experiments also indicate that gloss ratings change as a function of estimated surface distance, rather than as a function of image distance. Surface continuity affects gloss ratings, suggesting that apprehension of 3D surface structure is crucial for gloss perception.
Resumo:
Lehar's lively discussion builds on a critique of neural models of vision that is incorrect in its general and specific claims. He espouses a Gestalt perceptual approach, rather than one consistent with the "objective neurophysiological state of the visual system" (p. 1). Contemporary vision models realize his perceptual goals and also quantitatively explain neurophysiological and anatomical data.
Resumo:
This article develops a neural model of how the visual system processes natural images under variable illumination conditions to generate surface lightness percepts. Previous models have clarified how the brain can compute the relative contrast of images from variably illuminate scenes. How the brain determines an absolute lightness scale that "anchors" percepts of surface lightness to us the full dynamic range of neurons remains an unsolved problem. Lightness anchoring properties include articulation, insulation, configuration, and are effects. The model quantatively simulates these and other lightness data such as discounting the illuminant, the double brilliant illusion, lightness constancy and contrast, Mondrian contrast constancy, and the Craik-O'Brien-Cornsweet illusion. The model also clarifies the functional significance for lightness perception of anatomical and neurophysiological data, including gain control at retinal photoreceptors, and spatioal contrast adaptation at the negative feedback circuit between the inner segment of photoreceptors and interacting horizontal cells. The model retina can hereby adjust its sensitivity to input intensities ranging from dim moonlight to dazzling sunlight. A later model cortical processing stages, boundary representations gate the filling-in of surface lightness via long-range horizontal connections. Variants of this filling-in mechanism run 100-1000 times faster than diffusion mechanisms of previous biological filling-in models, and shows how filling-in can occur at realistic speeds. A new anchoring mechanism called the Blurred-Highest-Luminance-As-White (BHLAW) rule helps simulate how surface lightness becomes sensitive to the spatial scale of objects in a scene. The model is also able to process natural images under variable lighting conditions.
Resumo:
How does the laminar organization of cortical circuitry in areas VI and V2 give rise to 3D percepts of stratification, transparency, and neon color spreading in response to 2D pictures and 3D scenes? Psychophysical experiments have shown that such 3D percepts are sensitive to whether contiguous image regions have the same relative contrast polarity (dark-light or lightdark), yet long-range perceptual grouping is known to pool over opposite contrast polarities. The ocularity of contiguous regions is also critical for neon color spreading: Having different ocularity despite the contrast relationship that favors neon spreading blocks the spread. In addition, half visible points in a stereogram can induce near-depth transparency if the contrast relationship favors transparency in the half visible areas. It thus seems critical to have the whole contrast relationship in a monocular configuration, since splitting it between two stereogram images cancels the effect. What adaptive functions of perceptual grouping enable it to both preserve sensitivity to monocular contrast and also to pool over opposite contrasts? Aspects of cortical development, grouping, attention, perceptual learning, stereopsis and 3D planar surface perception have previously been analyzed using a 3D LAMINART model of cortical areas VI, V2, and V4. The present work consistently extends this model to show how like-polarity competition between VI simple cells in layer 4 may be combined with other LAMINART grouping mechanisms, such as cooperative pooling of opposite polarities at layer 2/3 complex cells. The model also explains how the Metelli Rules can lead to transparent percepts, how bistable transparency percepts can arise in which either surface can be perceived as transparent, and how such a transparency reversal can be facilitated by an attention shift. The like-polarity inhibition prediction is consistent with lateral masking experiments in which two f1anking Gabor patches with the same contrast polarity as the target increase the target detection threshold when they approach the target. It is also consistent with LAMINART simulations of cortical development. Other model explanations and testable predictions will also be presented.
Resumo:
How do visual form and motion processes cooperate to compute object motion when each process separately is insufficient? A 3D FORMOTION model specifies how 3D boundary representations, which separate figures from backgrounds within cortical area V2, capture motion signals at the appropriate depths in MT; how motion signals in MT disambiguate boundaries in V2 via MT-to-Vl-to-V2 feedback; how sparse feature tracking signals are amplified; and how a spatially anisotropic motion grouping process propagates across perceptual space via MT-MST feedback to integrate feature-tracking and ambiguous motion signals to determine a global object motion percept. Simulated data include: the degree of motion coherence of rotating shapes observed through apertures, the coherent vs. element motion percepts separated in depth during the chopsticks illusion, and the rigid vs. non-rigid appearance of rotating ellipses.