862 resultados para multimodal skrivundervisning


Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using high-resolution laser grain size instrument Mastersizer 2000, the grain size distribution of windblown depositions (loess and sandy dunes), aqueous sediments (lake, river, riverside and foreshore sand), weathering crust, sloping materials and other fine-grain sediments are systemically measured. The multimodal characteristics of grain size distribution of these sediments are carefully studied. The standard patterns and their grain size characteristics of various sediments are systemically summarized. The discrepancies of multimodal distribution among windblown depositions, aqueous sediments and other sediments are concluded and the physical mechanisms of grain size multimodal distribution of various sediments are also discussed in this paper. The major conclusions are followed: 1. The multimodal characteristic of grain size distribution is a common feature in all sediments and results from properties of transportation medium, dynamic intensity, transportation manner and other factors. 2. The windblown depositions are controlled by aerodynamic forcing, resulting in that the median size of the predominant mode gradually decreases form sandy dunes to loess. Similarly, the aqueous sediments are impacted by dynamic forces of water currents and the median grain size of the predominant mode decreases gradually from river to lake sediments. Because the kinetic viscidity of air is lower than of water, the grain size of modes of windblown depositions is usually finer than that of corresponding modes of aqueous sediments. Typical characteristics of sediments grain size distribution of various sediments have been summarized in the paper: (1) Suspended particles which diameters are less than 75μm are dominant in loess and dust. There are three modes in loess’ grain size distribution: fine, median and coarse (the median size is <1μm、1-10μm、10-75μm, respectively). The coarse mode which percentage is larger than that of others is controlled by source distance and aerodynamic intensity of dust source areas. Some samples also have a saltation mode which median size is about 300-500μm. Our analysis demonstrates that the interaction of wind, atmospheric turbulence, and dust grain gravity along the dust transportation path results in a multimodal grain size distribution for suspended dust. Changes in the median sizes of the coarse and medium modes are related to variation in aerodynamic forcing (lift force related to vertical wind and turbulence) during dust entrainment in the source area and turbulence intensity in the depositional area. (2) There is a predominant coarse saltation mode in grain size distribution of sandy dunes, which median size is about 100-300μm and the content is larger than that of other modes. The grain size distribution curve is near axis symmetric as a standard logarithm normal function. There are some suspended particles in some samples of sandy dunes, which distribution of the fine part is similar to that of loess. Comparing with sandy samples of river sediments, the sorting property of sandy dunes is better than of river samples although both they are the saltation mode. Thus, the sorting property is a criterion to distinguish dune sands and river sands. (3) There are 5~6 modes (median size are <1μm, 1-10μm, 10-70μm, 70-150μm, 150-400μm, >400μm respectively) in grain size distribution of lacustrine sediments. The former 4 modes are suspensive and others are saltated. Lacustrine sediments can be divided into three types: lake shore facies, transitional facies and central lake facies. The grain size distributions of the three facies are distinctly different and, at the same time, the transition among three modes is also clear. In all these modes, the third mode is a criteria to identify the windblown deposition in the watershed. In lake shore sediments, suspended particles are dominant, a saltation mode sometimes occurs and the fourth mode is the most important mode. In the transitional facies, the percentage of the fourth mode decreases and that of the second mode increases from lake shore to central lake. In the central lake facies, the second mode is dominant. A higher content of the second mode indicates its position more close to the central lake. (4) The grain size distribution of river sediments is the most complex. It consist of suspension, saltation and rolling modes. In most situations, the percentage of the saltation mode is larger than that of other modes. The percentage of suspension modes of river sediments is more than of sandy dunes. The grain size distribution of river sediments indicates dynamic strength of river currents. If the fourth mode is dominant, the dynamic forcing of river is weaker, such as in river floodplain. If the five or sixth mode is dominant, the water dynamic forcing of rivers is strong. (5) Sediments can be changed by later forcing in different degree to form some complicated deposition types. In the paper, the grain size distribution of aqueous sediments of windblown deposition, windblown sediments of aqueous deposition, weathering crust and slope materials are discussed and analyzed. 3. The grain size distribution characteristics of different sediments are concluded: (1) Modal difference: Usually there are suspended and saltation modes in the windblown deposition. The third mode is dominant in loess dust and the fifth mode is predominant in sandy dunes. There are suspended, saltation and rolling particles in aqueous sediments. In lacustrine sediments, the second and fourth mode are predominant for central lake facies or lake shore facies, respectively. In river sediments, the fourth, or fifth, or sixth mode is predominant. Suspended modes: the grain size of suspended particles of windblown depositions usually is less than 75μm. The content of suspended particles is lower or none in sandy dunes. However, suspended particles of aqueous sediments may reach 150μm. Difference in grain size of suspended modes represents difference between transitional mediums and the strength of dynamic forcing. Saltation modes: the median size of saltation mode of sandy dunes fluctuates less than that of river sediments. (2) Loess dust and lacustrine sediment: Their suspended particles are clearly different. There is an obvious pit between the second and the third modes in grain size distribution of lacustrine sediments. The phenomenon doesn’t occur in loess dust. In lacustrine sediments, the second mode can be a dominant mode, such as central lake facies, and contents of the second and the third modes change reversely. However, the percentage of the third mode is always the highest in loess dust. (3) Dune Sand and fluvial sand: In these two depositions, the saltation particles are dominant and the median sizes of their saltation modes overlay in distribution range. The fifth mode of dune sand fluctuates is sorted better than that of fluvial sand. (4) Lacustrine and fluvial sediments: In lacustrine sediments, there are 5-6 modes and suspended particles can be predominant. The second mode is dominant in central lake facies and the third mode is dominant in lake shore facies. Saltation or roll modes occurred in central lake facies may indicate strong precipitation events. In fluvial sediments, saltation particles (or rolling particles) usually dominant. 4. A estimation model of lake depth is firstly established by using contents of the second, the third and the fourth modes. 5. The paleoenvironmental history of the eastern part of SongLiao basin is also discussed by analyzing the grain size distribution of Yushu loess-like sediments in Jilin. It was found that there is a tectonic movement before 40ka B.P. in SongLiao basin. After the movement, loess dust deposited in Yushu area as keerqin desert developed. In recent 2000 years, the climate became drier and more deserts activated in the eastern part of Song-Liao basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most important functions in the individual development is the interaction and integration of each sensory input. There exist two competing theories, i.e. the deficiency theory and the compensatory theory, regarding the origin and nature of changes in visual functions observed after auditory deprivation. The deficiency theory proposed that integrative processes are essential for normal development. In contrast, the compensatory theory stated that the loss of one sense may be met by a greater reliance upon, therefore an enhancement of the remaining senses. Given that hearing impaired children’s learning depends primarily on visual information, it is important to recognize the differences of visual attention between them and their hearing age-mates. Differences among age groups could exist in either selectivity or sustained attention. Study 1 and study 2 explored the selective and sustained attention development of hearing impaired and hearing students with average cognitive ability, aged from 7 years to college students. The analysis and discussion of the results are based on the visual attention development as well as deficiency theory and compensatory theory. According to the results of the study 1 and study 2, the spatial distribution and controlling of the visual attention between hearing impaired and hearing students were also investigated in the study 3 and study 4. The present work showed that: Firstly, both hearing impaired and hearing participants had the similar developmental trajectory of the sustained attention. The ability of children’s sustained attention appeared to improve with age, and in adolescence it reached the peak. The hearing impaired participants had the comparable sustained attention skills to the matched hearing ones. Besides, the results of the hearing impaired participants showed that they could maintain their attention and vigilance on the current task over the observation period. Secondly, group differences of visual attention development were found between hearing impaired and hearing participants. In the childhood, the visual attention developmental speed of the hearing impaired children was slower than that of the hearing ones. The selective attention skill of the hearing impaired were not comparable to the hearing ones, however, their selective skill improved with age, so in the adulthood, hearing impaired students showed the slight advantage in the selective attention skill over the hearing ones. Thirdly, hearing impaired and hearing participants showed the similar spatial distribution in the attention resources. In the low perceptual load condition, both participants were suffered great interference of the distrator at the fixation. In contrast, in the high perceptual load condition, hearing impaired adults were suffered more interference of the peripheral distractor, which suggested that they distributed more attention resources to the peripheral field when faced difficult tasks. Fourthly, both groups showed similar processing in the visual attention tasks. That is, they both searched the target with only the color feature in a parallel way, but in a serial way while processing orientation feature and the features with the combination of the color and orientation. Furthermore, the results indicated that two groups show similar ways in the attention controlling. In summary, the present study showed that visual attention development was dependent upon the integration of multimodal sensory information. Because of the interaction and integration of the input from various sensory, it has a negative impact on the intact sensory at the early stage of one sensory loss, however, it can better the functions of other intact sensory gradually with development and practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently,Handheld Communication Devices is developing very fast, extending in users and spreading in application fields, and has an promising future. This study investigated the acceptance of the multimodal text entry method and the behavioral characteristics when using it. Based on the general information process model of a bimodal system and the human factor studies about the multimodal map system, the present study mainly focused on the hand-speech bimodal text entry method. For acceptance, the study investigated the subjective perception of the accuracy of speech recognition by Wizard of Oz (WOz) experiment and a questionnaire. Results showed that there was a linear relationship between the speech recognition accuracy and the subjective accuracy. Furthermore, as the familiarity increasing, the difference between the acceptable accuracy and the subjective accuracy gradually decreased. In addition, the similarity of meaning between the outcome of speech recognition and the correct sentences was an important referential criterion. The second study investigated three aspects of the bimodal text entry method, including input, error recovery and modal shifts. The first experiment aimed to find the behavioral characteristics of user when doing error recovery task. Results indicated that participants preferred to correct the error by handwriting, which had no relationship with the input modality. The second experiment aimed to discover the behavioral characteristics of users when doing text entry in various types of text. Results showed that users preferred to speech input in both words and sentences conditions, which was highly consistent among individuals, while no significant difference was found between handwriting and speech input in the character condition. Participants used more direct strategy than jumping strategy to deal with mixed text, especially for the Chinese-English mixed type. The third experiment examined the cognitive load in the different modal shifts, results suggesting that there were significant differences between different shifts. Moreover, relevant little time was needed in the Shift from speech input to hand input. Based on the main findings, implications were discussed as follows: Firstly, when evaluating a speech recognition system, attention should be paid to the fact that the speech recognition accuracy was not equal to the subjective accuracy. Secondly, in order to make a speech input system more acceptable, a good method is to train and supply the feedback for the accuracy in training, which improving the familiarity and sensitivity to the system. Thirdly, both the universal and individual behavioral patterns were taken into consideration to improve the error recovery method. Fourthly, easing the study and the use of speech input, the operations of speech input should be simpler. Fifthly, more convenient text input method for non-Chinese text entry should be provided. Finally, the shifting time between hand input and speech input provides an important parameter for the design of automatic-evoked speech recognition system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acousto-optic imaging (AOI) in optically diffuse media is a hybrid imaging modality in which a focused ultrasound beam is used to locally phase modulate light inside of turbid media. The modulated optical field carries with it information about the optical properties in the region where the light and sound interact. The motivation for the development of AOI systems is to measure optical properties at large depths within biological tissue with high spatial resolution. A photorefractive crystal (PRC) based interferometry system is developed for the detection of phase modulated light in AOI applications. Two-wave mixing in the PRC creates a reference beam that is wavefront matched to the modulated optical field collected from the specimen. The phase modulation is converted to an intensity modulation at the optical detector when these two fields interfere. The interferometer has a high optical etendue, making it well suited for AOI where the scattered light levels are typically low. A theoretical model for the detection of acoustically induced phase modulation in turbid media using PRC based interferometry is detailed. An AOI system, using a single element focused ultrasound transducer to pump the AO interaction and the PRC based detection system, is fabricated and tested on tissue mimicking phantoms. It is found that the system has sufficient sensitivity to detect broadband AO signals generated using pulsed ultrasound, allowing for AOI at low time averaged ultrasound output levels. The spatial resolution of the AO imaging system is studied as a function of the ultrasound pulse parameters. A theoretical model of light propagation in turbid media is used to explore the dependence of the AO response on the experimental geometry, light collection aperture, and target optical properties. Finally, a multimodal imaging system combining pulsed AOI and conventional B- mode ultrasound imaging is developed. B-mode ultrasound and AO images of targets embedded in both highly diffuse phantoms and biological tissue ex vivo are obtained, and millimeter resolution is demonstrated in three dimensions. The AO images are intrinsically co-registered with the B-mode ultrasound images. The results suggest that AOI can be used to supplement conventional B-mode ultrasound imaging with optical information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A neural network system, NAVITE, for incremental trajectory generation and obstacle avoidance is presented. Unlike other approaches, the system is effective in unstructured environments. Multimodal inforrnation from visual and range data is used for obstacle detection and to eliminate uncertainty in the measurements. Optimal paths are computed without explicitly optimizing cost functions, therefore reducing computational expenses. Simulations of a planar mobile robot (including the dynamic characteristics of the plant) in obstacle-free and object avoidance trajectories are presented. The system can be extended to incorporate global map information into the local decision-making process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A neural model is described of how the brain may autonomously learn a body-centered representation of 3-D target position by combining information about retinal target position, eye position, and head position in real time. Such a body-centered spatial representation enables accurate movement commands to the limbs to be generated despite changes in the spatial relationships between the eyes, head, body, and limbs through time. The model learns a vector representation--otherwise known as a parcellated distributed representation--of target vergence with respect to the two eyes, and of the horizontal and vertical spherical angles of the target with respect to a cyclopean egocenter. Such a vergence-spherical representation has been reported in the caudal midbrain and medulla of the frog, as well as in psychophysical movement studies in humans. A head-centered vergence-spherical representation of foveated target position can be generated by two stages of opponent processing that combine corollary discharges of outflow movement signals to the two eyes. Sums and differences of opponent signals define angular and vergence coordinates, respectively. The head-centered representation interacts with a binocular visual representation of non-foveated target position to learn a visuomotor representation of both foveated and non-foveated target position that is capable of commanding yoked eye movementes. This head-centered vector representation also interacts with representations of neck movement commands to learn a body-centered estimate of target position that is capable of commanding coordinated arm movements. Learning occurs during head movements made while gaze remains fixed on a foveated target. An initial estimate is stored and a VOR-mediated gating signal prevents the stored estimate from being reset during a gaze-maintaining head movement. As the head moves, new estimates arc compared with the stored estimate to compute difference vectors which act as error signals that drive the learning process, as well as control the on-line merging of multimodal information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electroencephalogram (EEG) is a medical technology that is used in the monitoring of the brain and in the diagnosis of many neurological illnesses. Although coarse in its precision, the EEG is a non-invasive tool that requires minimal set-up times, and is suitably unobtrusive and mobile to allow continuous monitoring of the patient, either in clinical or domestic environments. Consequently, the EEG is the current tool-of-choice with which to continuously monitor the brain where temporal resolution, ease-of- use and mobility are important. Traditionally, EEG data are examined by a trained clinician who identifies neurological events of interest. However, recent advances in signal processing and machine learning techniques have allowed the automated detection of neurological events for many medical applications. In doing so, the burden of work on the clinician has been significantly reduced, improving the response time to illness, and allowing the relevant medical treatment to be administered within minutes rather than hours. However, as typical EEG signals are of the order of microvolts (μV ), contamination by signals arising from sources other than the brain is frequent. These extra-cerebral sources, known as artefacts, can significantly distort the EEG signal, making its interpretation difficult, and can dramatically disimprove automatic neurological event detection classification performance. This thesis therefore, contributes to the further improvement of auto- mated neurological event detection systems, by identifying some of the major obstacles in deploying these EEG systems in ambulatory and clinical environments so that the EEG technologies can emerge from the laboratory towards real-world settings, where they can have a real-impact on the lives of patients. In this context, the thesis tackles three major problems in EEG monitoring, namely: (i) the problem of head-movement artefacts in ambulatory EEG, (ii) the high numbers of false detections in state-of-the-art, automated, epileptiform activity detection systems and (iii) false detections in state-of-the-art, automated neonatal seizure detection systems. To accomplish this, the thesis employs a wide range of statistical, signal processing and machine learning techniques drawn from mathematics, engineering and computer science. The first body of work outlined in this thesis proposes a system to automatically detect head-movement artefacts in ambulatory EEG and utilises supervised machine learning classifiers to do so. The resulting head-movement artefact detection system is the first of its kind and offers accurate detection of head-movement artefacts in ambulatory EEG. Subsequently, addtional physiological signals, in the form of gyroscopes, are used to detect head-movements and in doing so, bring additional information to the head- movement artefact detection task. A framework for combining EEG and gyroscope signals is then developed, offering improved head-movement arte- fact detection. The artefact detection methods developed for ambulatory EEG are subsequently adapted for use in an automated epileptiform activity detection system. Information from support vector machines classifiers used to detect epileptiform activity is fused with information from artefact-specific detection classifiers in order to significantly reduce the number of false detections in the epileptiform activity detection system. By this means, epileptiform activity detection which compares favourably with other state-of-the-art systems is achieved. Finally, the problem of false detections in automated neonatal seizure detection is approached in an alternative manner; blind source separation techniques, complimented with information from additional physiological signals are used to remove respiration artefact from the EEG. In utilising these methods, some encouraging advances have been made in detecting and removing respiration artefacts from the neonatal EEG, and in doing so, the performance of the underlying diagnostic technology is improved, bringing its deployment in the real-world, clinical domain one step closer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron microscopy (EM) has advanced in an exponential way since the first transmission electron microscope (TEM) was built in the 1930’s. The urge to ‘see’ things is an essential part of human nature (talk of ‘seeing is believing’) and apart from scanning tunnel microscopes which give information about the surface, EM is the only imaging technology capable of really visualising atomic structures in depth down to single atoms. With the development of nanotechnology the demand to image and analyse small things has become even greater and electron microscopes have found their way from highly delicate and sophisticated research grade instruments to key-turn and even bench-top instruments for everyday use in every materials research lab on the planet. The semiconductor industry is as dependent on the use of EM as life sciences and pharmaceutical industry. With this generalisation of use for imaging, the need to deploy advanced uses of EM has become more and more apparent. The combination of several coinciding beams (electron, ion and even light) to create DualBeam or TripleBeam instruments for instance enhances the usefulness from pure imaging to manipulating on the nanoscale. And when it comes to the analytic power of EM with the many ways the highly energetic electrons and ions interact with the matter in the specimen there is a plethora of niches which evolved during the last two decades, specialising in every kind of analysis that can be thought of and combined with EM. In the course of this study the emphasis was placed on the application of these advanced analytical EM techniques in the context of multiscale and multimodal microscopy – multiscale meaning across length scales from micrometres or larger to nanometres, multimodal meaning numerous techniques applied to the same sample volume in a correlative manner. In order to demonstrate the breadth and potential of the multiscale and multimodal concept an integration of it was attempted in two areas: I) Biocompatible materials using polycrystalline stainless steel and II) Semiconductors using thin multiferroic films. I) The motivation to use stainless steel (316L medical grade) comes from the potential modulation of endothelial cell growth which can have a big impact on the improvement of cardio-vascular stents – which are mainly made of 316L – through nano-texturing of the stent surface by focused ion beam (FIB) lithography. Patterning with FIB has never been reported before in connection with stents and cell growth and in order to gain a better understanding of the beam-substrate interaction during patterning a correlative microscopy approach was used to illuminate the patterning process from many possible angles. Electron backscattering diffraction (EBSD) was used to analyse the crystallographic structure, FIB was used for the patterning and simultaneously visualising the crystal structure as part of the monitoring process, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to analyse the topography and the final step being 3D visualisation through serial FIB/SEM sectioning. II) The motivation for the use of thin multiferroic films stems from the ever-growing demand for increased data storage at lesser and lesser energy consumption. The Aurivillius phase material used in this study has a high potential in this area. Yet it is necessary to show clearly that the film is really multiferroic and no second phase inclusions are present even at very low concentrations – ~0.1vol% could already be problematic. Thus, in this study a technique was developed to analyse ultra-low density inclusions in thin multiferroic films down to concentrations of 0.01%. The goal achieved was a complete structural and compositional analysis of the films which required identification of second phase inclusions (through elemental analysis EDX(Energy Dispersive X-ray)), localise them (employing 72 hour EDX mapping in the SEM), isolate them for the TEM (using FIB) and give an upper confidence limit of 99.5% to the influence of the inclusions on the magnetic behaviour of the main phase (statistical analysis).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Real time monitoring of oxygenation and respiration is on the cutting edge of bioanalysis, including studies of cell metabolism, bioenergetics, mitochondrial function and drug toxicity. This thesis presents the development and evaluation of new luminescent probes and techniques for intracellular O2 sensing and imaging. A new oxygen consumption rate (OCR) platform based on the commercial microfluidic perfusion channel μ-slides compatible with extra- and intracellular O2 sensitive probes, different cell lines and measurement conditions was developed. The design of semi-closed channels allowed cell treatments, multiplexing with other assays and two-fold higher sensitivity to compare with microtiter plate. We compared three common OCR platforms: hermetically sealed quartz cuvettes for absolute OCRs, partially sealed with mineral oil 96-WPs for relative OCRs, and open 96-WPs for local cell oxygenation. Both 96-WP platforms were calibrated against absolute OCR platform with MEF cell line, phosphorescent O2 probe MitoXpress-Intra and time-resolved fluorescence reader. Found correlations allow tracing of cell respiration over time in a high throughput format with the possibility of cell stimulation and of changing measurement conditions. A new multimodal intracellular O2 probe, based on the phosphorescent reporter dye PtTFPP, fluorescent FRET donor and two-photon antennae PFO and cationic nanoparticles RL-100 was described. This probe, called MM2, possesses high brightness, photo- and chemical stability, low toxicity, efficient cell staining and high-resolution intracellular O2 imaging with 2D and 3D cell cultures in intensity, ratiometric and lifetime-based modalities with luminescence readers and FLIM microscopes. Extended range of O2 sensitive probes was designed and studied in order to optimize their spectral characteristics and intracellular targeting, using different NPs materials, delivery vectors, ratiometric pairs and IR dyes. The presented improvements provide useful tool for high sensitive monitoring and imaging of intracellular O2 in different measurement formats with wide range of physiological applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maps are a mainstay of visual, somatosensory, and motor coding in many species. However, auditory maps of space have not been reported in the primate brain. Instead, recent studies have suggested that sound location may be encoded via broadly responsive neurons whose firing rates vary roughly proportionately with sound azimuth. Within frontal space, maps and such rate codes involve different response patterns at the level of individual neurons. Maps consist of neurons exhibiting circumscribed receptive fields, whereas rate codes involve open-ended response patterns that peak in the periphery. This coding format discrepancy therefore poses a potential problem for brain regions responsible for representing both visual and auditory information. Here, we investigated the coding of auditory space in the primate superior colliculus(SC), a structure known to contain visual and oculomotor maps for guiding saccades. We report that, for visual stimuli, neurons showed circumscribed receptive fields consistent with a map, but for auditory stimuli, they had open-ended response patterns consistent with a rate or level-of-activity code for location. The discrepant response patterns were not segregated into different neural populations but occurred in the same neurons. We show that a read-out algorithm in which the site and level of SC activity both contribute to the computation of stimulus location is successful at evaluating the discrepant visual and auditory codes, and can account for subtle but systematic differences in the accuracy of auditory compared to visual saccades. This suggests that a given population of neurons can use different codes to support appropriate multimodal behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Enhanced recovery after surgery (ERAS) is a multimodal approach to perioperative care that combines a range of interventions to enable early mobilization and feeding after surgery. We investigated the feasibility, clinical effectiveness, and cost savings of an ERAS program at a major U. S. teaching hospital. METHODS: Data were collected from consecutive patients undergoing open or laparoscopic colorectal surgery during 2 time periods, before and after implementation of an ERAS protocol. Data collected included patient demographics, operative, and perioperative surgical and anesthesia data, need for analgesics, complications, inpatient medical costs, and 30-day readmission rates. RESULTS: There were 99 patients in the traditional care group, and 142 in the ERAS group. The median length of stay (LOS) was 5 days in the ERAS group compared with 7 days in the traditional group (P < 0.001). The reduction in LOS was significant for both open procedures (median 6 vs 7 days, P = 0.01), and laparoscopic procedures (4 vs 6 days, P < 0.0001). ERAS patients had fewer urinary tract infections (13% vs 24%, P = 0.03). Readmission rates were lower in ERAS patients (9.8% vs 20.2%, P = 0.02). DISCUSSION: Implementation of an enhanced recovery protocol for colorectal surgery at a tertiary medical center was associated with a significantly reduced LOS and incidence of urinary tract infection. This is consistent with that of other studies in the literature and suggests that enhanced recovery programs could be implemented successfully and should be considered in U.S. hospitals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding animals' spatial perception is a critical step toward discerning their cognitive processes. The spatial sense is multimodal and based on both the external world and mental representations of that world. Navigation in each species depends upon its evolutionary history, physiology, and ecological niche. We carried out foraging experiments on wild vervet monkeys (Chlorocebus pygerythrus) at Lake Nabugabo, Uganda, to determine the types of cues used to detect food and whether associative cues could be used to find hidden food. Our first and second set of experiments differentiated between vervets' use of global spatial cues (including the arrangement of feeding platforms within the surrounding vegetation) and/or local layout cues (the position of platforms relative to one another), relative to the use of goal-object cues on each platform. Our third experiment provided an associative cue to the presence of food with global spatial, local layout, and goal-object cues disguised. Vervets located food above chance levels when goal-object cues and associative cues were present, and visual signals were the predominant goal-object cues that they attended to. With similar sample sizes and methods as previous studies on New World monkeys, vervets were not able to locate food using only global spatial cues and local layout cues, unlike all five species of platyrrhines thus far tested. Relative to these platyrrhines, the spatial location of food may need to stay the same for a longer time period before vervets encode this information, and goal-object cues may be more salient for them in small-scale space.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La producción primaria de arroz en Argentina ha sufrido en su evolución cambios en su localización geográfica, ubicándose actualmente en la región Litoral. En los últimos años, por diversas causas, hubo un desplazamiento de la producción hacia el norte de dicha región. En este contexto, los molinos arroceros tuvieron un proceso de concentración geográfica y de reducción de capacidad de elaboración -por cierre de plantas-, pero no cambiaron su localización. Como consecuencia, se afectaron los márgenes de comercialización y los ingresos de los productores. En Uruguay, el cultivo comenzó en el Este, y luego tuvo una expansión al Centro y Norte del país. Esto obedeció a razones de índole estructural inherentes a la expansión de la actividad y al tipo de articulación entre la producción y la industria, por lo que la localización de estas últimas acompañó dicha expansión. El objetivo de éste trabajo es realizar una caracterización de la organización técnica, económica y social del sector arrocero, cuantificar los costos de transporte inherentes a la localización de la producción primaria con respecto a los molinos para Argentina, evaluar cambios de la última década, realizar un análisis comparativo respecto de Uruguay, y elaborar para el caso de Argentina un modelo de transporte que incluya operatorias de tipo multimodal, con la utilización del ferrocarril y del transporte fluvial por los ríos Paraná y Uruguay. Para ello se han elaborado modelos de programación lineal en los cuales los resultados obtenidos son la minimización del costo de transporte, las rutas, los medios utilizados y la información que brindan los costos de oportunidad y de sustitución en caso que los mismos resultaron relevantes. Los resultados del modelo señalan que debido a la estructuración del CAI arrocero argentino los costos de transporte se han duplicado entre 1998 y el año 2006, cuando eran aquel año similares a los costos en Uruguay. La incorporación de transporte ferroviario y fluvial al modelo disminuye parcialmente dicho encarecimiento.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La producción primaria de arroz en Argentina ha sufrido en su evolución cambios en su localización geográfica, ubicándose actualmente en la región Litoral. En los últimos años, por diversas causas, hubo un desplazamiento de la producción hacia el norte de dicha región. En este contexto, los molinos arroceros tuvieron un proceso de concentración geográfica y de reducción de capacidad de elaboración -por cierre de plantas-, pero no cambiaron su localización. Como consecuencia, se afectaron los márgenes de comercialización y los ingresos de los productores. En Uruguay, el cultivo comenzó en el Este, y luego tuvo una expansión al Centro y Norte del país. Esto obedeció a razones de índole estructural inherentes a la expansión de la actividad y al tipo de articulación entre la producción y la industria, por lo que la localización de estas últimas acompañó dicha expansión. El objetivo de éste trabajo es realizar una caracterización de la organización técnica, económica y social del sector arrocero, cuantificar los costos de transporte inherentes a la localización de la producción primaria con respecto a los molinos para Argentina, evaluar cambios de la última década, realizar un análisis comparativo respecto de Uruguay, y elaborar para el caso de Argentina un modelo de transporte que incluya operatorias de tipo multimodal, con la utilización del ferrocarril y del transporte fluvial por los ríos Paraná y Uruguay. Para ello se han elaborado modelos de programación lineal en los cuales los resultados obtenidos son la minimización del costo de transporte, las rutas, los medios utilizados y la información que brindan los costos de oportunidad y de sustitución en caso que los mismos resultaron relevantes. Los resultados del modelo señalan que debido a la estructuración del CAI arrocero argentino los costos de transporte se han duplicado entre 1998 y el año 2006, cuando eran aquel año similares a los costos en Uruguay. La incorporación de transporte ferroviario y fluvial al modelo disminuye parcialmente dicho encarecimiento.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper describes the design of an efficient and robust genetic algorithm for the nuclear fuel loading problem (i.e., refuellings: the in-core fuel management problem) - a complex combinatorial, multimodal optimisation., Evolutionary computation as performed by FUELGEN replaces heuristic search of the kind performed by the FUELCON expert system (CAI 12/4), to solve the same problem. In contrast to the traditional genetic algorithm which makes strong requirements on the representation used and its parameter setting in order to be efficient, the results of recent research results on new, robust genetic algorithms show that representations unsuitable for the traditional genetic algorithm can still be used to good effect with little parameter adjustment. The representation presented here is a simple symbolic one with no linkage attributes, making the genetic algorithm particularly easy to apply to fuel loading problems with differing core structures and assembly inventories. A nonlinear fitness function has been constructed to direct the search efficiently in the presence of the many local optima that result from the constraint on solutions.