904 resultados para motion-based driving simulator
Resumo:
The problem of identification of stiffness, mass and damping properties of linear structural systems, based on multiple sets of measurement data originating from static and dynamic tests is considered. A strategy, within the framework of Kalman filter based dynamic state estimation, is proposed to tackle this problem. The static tests consists of measurement of response of the structure to slowly moving loads, and to static loads whose magnitude are varied incrementally; the dynamic tests involve measurement of a few elements of the frequency response function (FRF) matrix. These measurements are taken to be contaminated by additive Gaussian noise. An artificial independent variable τ, that simultaneously parameterizes the point of application of the moving load, the magnitude of the incrementally varied static load and the driving frequency in the FRFs, is introduced. The state vector is taken to consist of system parameters to be identified. The fact that these parameters are independent of the variable τ is taken to constitute the set of ‘process’ equations. The measurement equations are derived based on the mechanics of the problem and, quantities, such as displacements and/or strains, are taken to be measured. A recursive algorithm that employs a linearization strategy based on Neumann’s expansion of structural static and dynamic stiffness matrices, and, which provides posterior estimates of the mean and covariance of the unknown system parameters, is developed. The satisfactory performance of the proposed approach is illustrated by considering the problem of the identification of the dynamic properties of an inhomogeneous beam and the axial rigidities of members of a truss structure.
Resumo:
We present a motion detection algorithm which detects direction of motion at sufficient number of points and thus segregates the edge image into clusters of coherently moving points. Unlike most algorithms for motion analysis, we do not estimate magnitude of velocity vectors or obtain dense motion maps. The motivation is that motion direction information at a number of points seems to be sufficient to evoke perception of motion and hence should be useful in many image processing tasks requiring motion analysis. The algorithm essentially updates the motion at previous time using the current image frame as input in a dynamic fashion. One of the novel features of the algorithm is the use of some feedback mechanism for evidence segregation. This kind of motion analysis can identify regions in the image that are moving together coherently, and such information could be sufficient for many applications that utilize motion such as segmentation, compression, and tracking. We present an algorithm for tracking objects using our motion information to demonstrate the potential of this motion detection algorithm.
Resumo:
This paper presents a novel RTK-based GNSS Lagrangian drifter system that is capable of monitoring water velocity, turbulence and dispersion coefficients of river and estuarine. The Lagrangian drifters use the dual-frequency real time kinematic (RTK) technique for both position and velocity estimations. The capsule is designed to meet the requirements such as minimizing height, diameter, minimizing the direct wind drag, positive buoyancy for satellite signal reception and stability, and waterproof housing for electronic components, such as GNSS receiver and computing board. The collected GNSS data are processed with post-processing RTK software. Several experiments have been carried out in two rivers in Brisbane and Sunshine Coast in Queensland. Results show that the high accuracy GNSS-drifters can be used to measure dispersion coefficient resulting from sub-tidal velocity fluctuations in shallow tidal water. In addition, the RTK-GNSS drifters respond well to vertical motion and thus could be applicable to flood monitoring.
Resumo:
Stationary processes are random variables whose value is a signal and whose distribution is invariant to translation in the domain of the signal. They are intimately connected to convolution, and therefore to the Fourier transform, since the covariance matrix of a stationary process is a Toeplitz matrix, and Toeplitz matrices are the expression of convolution as a linear operator. This thesis utilises this connection in the study of i) efficient training algorithms for object detection and ii) trajectory-based non-rigid structure-from-motion.
Resumo:
We consider the problem of detecting statistically significant sequential patterns in multineuronal spike trains. These patterns are characterized by ordered sequences of spikes from different neurons with specific delays between spikes. We have previously proposed a data-mining scheme to efficiently discover such patterns, which occur often enough in the data. Here we propose a method to determine the statistical significance of such repeating patterns. The novelty of our approach is that we use a compound null hypothesis that not only includes models of independent neurons but also models where neurons have weak dependencies. The strength of interaction among the neurons is represented in terms of certain pair-wise conditional probabilities. We specify our null hypothesis by putting an upper bound on all such conditional probabilities. We construct a probabilistic model that captures the counting process and use this to derive a test of significance for rejecting such a compound null hypothesis. The structure of our null hypothesis also allows us to rank-order different significant patterns. We illustrate the effectiveness of our approach using spike trains generated with a simulator.
Resumo:
This article draws on the design and implementation of three mobile learning projects introduced by Flanagan in 2011, 2012 and 2014 engaging a total of 206 participants. The latest of these projects is highlighted in this article. Two other projects provide additional examples of innovative strategies to engage mobile and cloud systems describing how electronic and mobile technology can help facilitate teaching and learning, assessment for learning and assessment as learning, and support communities of practice. The second section explains the theoretical premise supporting the implementation of technology and promulgates a hermeneutic phenomenological approach. The third section discusses mobility, both in terms of the exploration of wearable technology in the prototypes developed as a result of the projects, and the affordances of mobility within pedagogy. Finally the quantitative and qualitative methods in place to evaluate m-learning are explained.
Resumo:
The wave functions of moving bound states may be expected to contract in the direction of motion, in analogy to a rigid rod in classical special relativity, when the constituents are at equal (ordinary) time. Indeed, the Lorentz contraction of wave functions is often appealed to in qualitative discussions. However, only few field theory studies exist of equal-time wave functions in motion. In this thesis I use the Bethe-Salpeter formalism to study the wave function of a weakly bound state such as a hydrogen atom or positronium in a general frame. The wave function of the e^-e^+ component of positronium indeed turns out to Lorentz contract both in 1+1 and in 3+1 dimensional quantum electrodynamics, whereas the next-to-leading e^-e^+\gamma Fock component of the 3+1 dimensional theory deviates from classical contraction. The second topic of this thesis concerns single spin asymmetries measured in scattering on polarized bound states. Such spin asymmetries have so far mainly been analyzed using the twist expansion of perturbative QCD. I note that QCD vacuum effects may give rise to a helicity flip in the soft rescattering of the struck quark, and that this would cause a nonvanishing spin asymmetry in \ell p^\uparrow -> \ell' + \pi + X in the Bjorken limit. An analogous asymmetry may arise in p p^\uparrow -> \pi + X from Pomeron-Odderon interference, if the Odderon has a helicity-flip coupling. Finally, I study the possibility that the large single spin asymmetry observed in p p^\uparrow -> \pi(x_F,k_\perp) + X when the pion carries a high momentum fraction x_F of the polarized proton momentum arises from coherent effects involving the entire polarized bound state.
Resumo:
The postpartum period is typically a time of increased sleepiness, however little research has investigated mothers' sleepiness whilst driving during this period. The research presented in this thesis details three studies systematically designed to assess postpartum mothers' sleepiness and driving, followed by the utilisation of this information in the development of an information-based program designed to convey pertinent evidence-based information about postpartum sleepiness, sleep, and sleepy driving.
Resumo:
Feature track matrix factorization based methods have been attractive solutions to the Structure-front-motion (Sfnl) problem. Group motion of the feature points is analyzed to get the 3D information. It is well known that the factorization formulations give rise to rank deficient system of equations. Even when enough constraints exist, the extracted models are sparse due the unavailability of pixel level tracks. Pixel level tracking of 3D surfaces is a difficult problem, particularly when the surface has very little texture as in a human face. Only sparsely located feature points can be tracked and tracking error arc inevitable along rotating lose texture surfaces. However, the 3D models of an object class lie in a subspace of the set of all possible 3D models. We propose a novel solution to the Structure-from-motion problem which utilizes the high-resolution 3D obtained from range scanner to compute a basis for this desired subspace. Adding subspace constraints during factorization also facilitates removal of tracking noise which causes distortions outside the subspace. We demonstrate the effectiveness of our formulation by extracting dense 3D structure of a human face and comparing it with a well known Structure-front-motion algorithm due to Brand.
Resumo:
Main chain and segmental dynamics of polyisoprene (PI) and poly(methyl methacrylate)(PMMA) chains in semi IPNs were systematically studied over a wide range of temperatures (above and below T-g of both polymers) as a function of composition, crosslink density, and molecular weight. The immiscible polymers retained most of its characteristic molecular motion; however, the semi IPN synthesis resulted in dramatic changes in the motional behavior of both polymers due to the molecular level interpenetration between two polymer chains. ESR spin probe method was found to be sensitive to the concentration changes of PMMA in semi IPNs. Low temperature spectra showed the characteristics of rigid limit spectra, and in the range of 293-373 K.complex spectra were obtained with the slow component mostly arisingout of the PMMA rich regions and fast component from the PI phase. We found that the rigid PMMA chains closely interpenetrated into thehighly mobile PI network imparts motional restriction in nearby PI chains, and the highly mobile PI chains induce some degree of flexibility in highly rigid PMMA chains. Molecular level interchain mixing was found to be more efficient at a PMMA concentration of 35 wt.%. Moreover, the strong interphase formed in the above mentionedsemi IPN contributed to the large slow component in the ESR spectra at higher temperature. The shape of the spectra along with the data obtained from the simulations of spectra was correlated to the morphology of the semi IPNs. The correlation time measurement detected the motional region associated with the glass transition of PI and PMMA, and these regions were found to follow the same pattern of shifts in a-relaxation of PI and PMMA observed in DMA analysis. Activation energies associated with the T-g regions were also calculated. T-50G was found to correlate with the T-g of PMMA, and the volume of polymer segments undergoing glass transitional motion was calculated to be 1.7 nm(3).C-13 T-1 rho measurements of PMMA carbons indicate that the molecular level interactions were strong in semi IPN irrespective of the immiscible nature of polymers. The motional characteristics of H atoms attached to carbon atoms in both polymers were analyzed using 2D WISE NMR. Main relaxations of both components shifted inward, and both SEM and TEM analysis showed the development of a nanometer sized morphology in the case of highly crosslinked semi IPN. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This study contributes to the executive stock option literature by looking at factors driving the introduction of such a compensation form on a firm level. Using a discrete decision model I test the explanatory power of several agency theory based variables and find strong support for predictability of the form of executive compensation. Ownership concentration and liquidity are found to have a significant negative effect on the probability of stock option adoption. Furtermore, I find evidence of CEO ownership, institutional ownership, investment intensity, and historical market return having a significant and a positive relationship to the likelihood of adopting a executive stock option program.
Resumo:
Biological motion has successfully been used for analysis of a person's mood and other psychological traits. Efforts are made to use human gait as a non-invasive mode of biometric. In this reported work, we try to study the effectiveness of biological gait motion of people as a cue to biometric based person recognition. The data is 3D in nature and, hence, has more information with itself than the cues obtained from video-based gait patterns. The high accuracies of person recognition using a simple linear model of data representation and simple neighborhood based classfiers, suggest that it is the nature of the data which is more important than the recognition scheme employed.
Resumo:
System of kinematical conservation laws (KCL) govern evolution of a curve in a plane or a surface in space, even if the curve or the surface has singularities on it. In our recent publication K. R. Arun, P. Prasad, 3-D kinematical conservation laws (KCL): evolution of a surface in R-3-in particular propagation of a nonlinear wavefront, Wave Motion 46 (2009) 293-311] we have developed a mathematical theory to study the successive positions and geometry of a 3-D weakly nonlinear wavefront by adding an energy transport equation to KCL. The 7 x 7 system of equations of this KCL based 3-D weakly nonlinear ray theory (WNLRT) is quite complex and explicit expressions for its two nonzero eigenvalues could not be obtained before. In this short note, we use two different methods: (i) the equivalence of KCL and ray equations and (ii) the transformation of surface coordinates, to derive the same exact expressions for these eigenvalues. The explicit expressions for nonzero eigenvalues are important also for checking stability of any numerical scheme to solve 3-D WNLRT. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We present a low-complexity algorithm for intrusion detection in the presence of clutter arising from wind-blown vegetation, using Passive Infra-Red (PIR) sensors in a Wireless Sensor Network (WSN). The algorithm is based on a combination of Haar Transform (HT) and Support-Vector-Machine (SVM) based training and was field tested in a network setting comprising of 15-20 sensing nodes. Also contained in this paper is a closed-form expression for the signal generated by an intruder moving at a constant velocity. It is shown how this expression can be exploited to determine the direction of motion information and the velocity of the intruder from the signals of three well-positioned sensors.
Resumo:
Seepage through sand bed channels in a downward direction (suction) reduces the stability of particles and initiates the sand movement. Incipient motion of sand bed channel with seepage cannot be designed by using the conventional approach. Metamodeling techniques, which employ a non-linear pattern analysis between input and output parameters and solely based on the experimental observations, can be used to model such phenomena. Traditional approach to find non-dimensional parameters has not been used in the present work. Parameters, which can influence the incipient motion with seepage, have been identified and non-dimensionalized in the present work. Non-dimensional stream power concept has been used to describe the process. By using these non-dimensional parameters; present work describes a radial basis function (RBF) metamodel for prediction of incipient motion condition affected by seepage. The coefficient of determination, R-2 of the model is 0.99. Thus, it can be said that model predicts the phenomena very well. With the help of the metamodel, design curves have been presented for designing the sand bed channel when it is affected by seepage. (C) 2010 Elsevier B.V. All rights reserved.