911 resultados para mRNA hepatic expression
Resumo:
There is evidence that several fibroblast growth factors (FGFs) are involved in growth and development of the corpus luteum (CL), but many FGFs have not been investigated in this tissue, including FGF10. The objective of this study was to determine if FGF10 and its receptor (FGFR2B) are expressed in the CL. Bovine CL were collected from an abattoir and classed as corpus hemorrhagica (stage 1), developing (stage 11), developed (stage 111), and regressed (stage IV) CL. Expression of FGF10 and FGFR2B mRNA was measured by reverse transcription-polymerase chain reaction (RT-PCR). Both genes were expressed in bovine CL, and FGF10 expression did not differ between stages of CL development. FGF10 protein was localized to large and small luteal cells by immunohistochemistry. FGFR2B expression was approximately threefold higher in regressed compared to developing and developed CL (P < 0.05). To determine if FGF10 and FGFR2B expression is regulated during functional luteolysis, cattle were injected with PGF2 alpha and CL collected at 0, 0.5, 2, 4, 12, 24, 48, and 64 hr thereafter (n = 5 CL/time point), and mRNA abundance was measured by real-time RT-PCR. FGF10 mRNA expression did not change during functional luteolysis, whereas FGFR2B mRNA abundance decreased significantly at 2, 4, and 12 hr after PGF2a, and returned to pretreatment levels for the period 24-64 hr post-PGF2 alpha. These data suggest a potential role for FGFR2B signaling during structural luteolysis in bovine CL.
Resumo:
There is evidence that fibroblast growth factors (FGFs) are involved in the regulation of growth and regression of the corpus luteum (CL). However, the expression pattern of most FGF receptors (FGFRs) during CL lifespan is still unknown. The objective of the present study was to determine the pattern of expression of `B` and `C` splice variants of FGFRs in the bovine CL. Bovine CL were collected from an abattoir and classed as corpora hemorrhagica (Stage I), developing (Stage II), developed (Stage III) or regressed (Stage IV) CL. Expression of FGFR mRNA was measured by semiquantitative reverse transcription-polymerase chain reaction and FGFR protein was localised by immunohistochemistry. Expression of mRNA encoding the `B` and `C` spliced forms of FGFR1 and FGFR2 was readily detectable in the bovine CL and was accompanied by protein localisation. FGFR1C and FGFR2C mRNA expression did not vary throughout CL lifespan, whereas FGFR1B was upregulated in the developed (Stage III) CL. FGFR3B, FGFR3C and FGFR4 expression was inconsistent in the bovine CL. The present data indicate that FGFR1 and FGFR2 splice variants are the main receptors for FGF action in the bovine CL.
Resumo:
Periodontal diseases are infectious diseases, in which periodontopathogens trigger chronic inflammatory and immune responses that lead to tissue destruction. It occurs through the generation of metalloproteinases and the activation of bone resorption mechanisms. Anti-inflammatory cytokines such as IL-10 seem to attenuate periodontal tissue destruction through the induction of tissue inhibitors of metalloproteinases (TIMPs) and the inhibitor of osteoclastogenesis osteoprotegerin (OPG). A high individual variation in levels of IL-10 mRNA is verified in periodontitis patients, which is possibly determined by genetic polymorphisms. In this study, the IL-10 promoter -592C/A single nucleotide polymorphism ( SNP), which is associated with a decrease in IL-10 production, was analyzed by RFLP in 116 chronic periodontitis (CP) patients and 173 control (C) subjects, and the IL-10, TIMPs, and OPG mRNA expression levels in diseased gingival tissues were determined by real-time-PCR. The IL-10-592 SNP CA (P=0.0012/OR=2.4/CI:1.4-4.1), AA (P=0.0458/OR=2.3/CI:1.1-4.9), and CA+AA (P=0.0006/OR=2.4/CI: 1.4-3.4) genotypes and the allele A (P=0.0036/OR=1.7/CI:1.2-2.4) were found to be significantly more prevalent in the CP group when compared with control subjects. Both CA and AA genotypes were associated with lower levels of IL-10, TIMP-3, and OPG mRNA expression in diseased periodontal tissues and were also associated with disease severity as mean pocket depth. Taken together, the results presented here demonstrate that IL10-592 SNP is functional in CP, being associated with lower levels of IL-10 mRNA expression, which is supposed to consequently decrease the expression of the downstream genes TIMP-3 and OPG, and influence periodontal disease outcome. J. Leukoc. Biol. 84: 1565-1573; 2008.
Resumo:
Objective. The objective of this study was to determine the expression of matrix metalloproteinase-9 (MMP-9) in apical periodontitis lesions. Study design. Nineteen epithelialized and 18 nonepithelialized apical periodontitis lesions were collected after periapical surgery. After histological processing, serial sectioning, H&E staining, and microscopic analysis, 10 epithelialized and 10 nonepithelialized lesions were selected for immunohistochemical analysis for MMP-9 and CD 68. At least one third of each specimen collected was frozen at -70 degrees C for further mRNA isolation and reverse transcription into cDNA for real-time-PCR procedures. Geometric averaging of multiple housekeeping genes normalized MMP-9 mRNA expression level. Results. Polymorphonuclear neutrophils, macrophages and lymphocytes presented MMP-9 positive immunostaining in both types of lesions. When present, epithelial cells were also stained. The number and the ratio of MMP-9(+)/total cells were greater in nonepithelialized than epithelialized lesions (P = .0001) presenting a positive correlation to CD68(+)/total cells (P = .045). Both types of lesions presented increased MMP-9 expression (P < .0001) when compared to healthy periapical ligaments. However, no significant differences were observed for MMP-9 mRNA expression between ephithelized and nonephithelized lesions. Conclusion. The present data suggest the participation of several inflammatory cells, mainly CD68(+) cells, in the MMP-9 expression in apical periodontitis lesions. MMP-9 could be actively enrolled in the extracellular matrix degradation in apical periodontitis lesions. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 107: 127-132)
Resumo:
Receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) are expressed in apical periodontitis, suggesting a role for these molecules during lesion development. However, the profiles of RANKL/OPG expression in periapical lesions remain unknown. In this study we investigated the patterns of RANKL and OPG mRNA expression by real-time polymerase chain reaction in human periapical granulomas (N = 44) and compared them with sites presenting characteristic bone resorbing activity: healthy (n = 14) and orthodontically stretched and compressed periodontal ligament (n = 26), healthy gingiva (n = 24), chronic gingivitis (n = 32), and chronic periodontitis (n = 34) samples. Both RANKL and OPG mRNA expression was higher in periapical granulomas when compared with healthy periodontal ligament. Distinct patterns of RANKL and OPG expression ratio were found in the granulomas and in different physiologic and pathologic conditions, with characteristic bone resorption activity potentially being indicative of the stable or progressive nature of the lesions. Lesions with radiographic image smaller than 5 mm showed higher RANKL/OPG expression than images greater than 5 mm. Periapical granulomas presented heterogeneous patterns of RANKL and OPG expression, ranging from samples with RANKL/OPG ratio similar to that seen in sites with minimal or absent bone resorption to samples with RANKL/OPG expression pattern comparable with active bone resorption sites.
Resumo:
Cell-surface proteoglycans have been known to be involved in many functions including interactions with components of the extracellular microenvironment, and act as co-receptors which bind and modify the action of various growth factors and cytokines. The purpose of this study was to determine the regulation by growth factors and cytokines on cell-surface proteoglycan gene expression in cultured human periodontal ligament (PDL) cells. Subconfluent, quiescent PDL cells were treated with various concentrations of serum, bFGF, PDGF-BB, TGF-beta1, IL-1 beta, and IFN-gamma. RT-PCR technique was used, complemented with Northern blot for syndecan-1, to examine the effects of these agents on the mRNA expression of five cell-surface proteoglycans (syndecan-1, syndecan-2, syndecan-4, glypican and betaglycan). Syndecan-1 mRNA levels increased in response to serum, bFGF and PDGF-BB, but decreased in response to TGF-beta1, IL-1 beta and IFN-gamma. In contrast, syndecan-2 mRNA levels were upregulated by TCF-beta1 and IL-1 beta stimulation, but remained unchanged with the other agents. Betaglycan gene expression decreased in response to serum, but was upregulated by TCF-beta1 and unchanged by the other stimulants. Additionally, syndecan-4 and glypican were not significantly altered in response to the regulator molecules studied, with the exception that glypican is decreased in response to IFN-gamma. These data demonstrate that the gene expression of the five cell-surface proteoglycans studied is differentially regulated in PDL cells lending support to the nation of distinct functions for these cell-surface proteoglycans. (C) 2001 Wiley-Liss, inc.
Resumo:
it has been demonstrated that the effect of GH on bone tissue is reduced with aging. In this study we tested the hypothesis that the action of GH on osteoblastic cells is donor-age-dependent by investigating the effect of GH on the development of osteoblastic phenotype in cultures of cells from adolescents (13-16 years old), young adults (18-35 years old), and adults (36-49 years old). Osteoblastic cells derived from human alveolar bone were cultured with or without GH for periods of up to 21 days, and parameters of in vitro osteogenesis and gene expression of osteoblastic markers were evaluated. GH increased culture growth, collagen content and alkaline phosphatase (ALP) activity in cultures from adolescents and young adults, whereas non-significant effect was observed in cultures from adults. While GH significantly increased the bone-like formation in cultures from adolescents, a slightly effect was observed in cultures from young adults and no alteration was detected in cultures from adults. Results from real-time PCR demonstrated that GH upregulated ALP, osteocalcin, type I collagen, and Cbfa1 mRNA levels in cultures from adolescents. In addition, cultures from young adults showed higher ALP mRNA expression and the expression of all evaluated genes was not affected by GH in cultures from adults. These results indicate that the GH effect on both in vitro osteogenesis and gene expression of osteoblastic markers is donor-age-dependent, being more pronounced on cultures from adolescents.
Growth hormone (GH)/GH receptor expression and GH-mediated effects during early bovine embryogenesis
Resumo:
Pituitary growth hormone (GH) stimulates postnatal growth and metabolism. The role of CH and its receptor (GHR) during prenatal development, however, is still controversial. As shown by reverse transcription polymerase chain reaction (RT-PCR), bovine in vitro fertilization embryos synthesized the transcript of GHR from Day 2 of embryonic life onwards. Real time RT-PCR revealed that synthesis of GHR mRNA was increased 5.9-fold in 6-day-old embryos compared with 2-day-old embryos. Using in situ hybridization, the mRNA encoding GHR was predominantly localized to the inner cell mass of blastocysts. The GHR protein was first visualized 3 days after fertilization. GH-specific transcripts were first detected in embryos on Day 8 of in vitro culture. As shown by transmission electron microscopy, GH treatment resulted in elimination of glycogen storage in 6- to 8-day-old embryos and an increase in exocytosis of lipid vesicles. These results suggest that a functional GHR able to modulate carbohydrate and lipid metabolism is synthesized during preimplantation development of the bovine embryo and that this GHR may be subject to activation by embryonic GH after Day 8.
Resumo:
The mechanisms whereby tissue sensitivity to PRL is controlled are not well understood. Here we report that expression of mRNA and protein for members of the SOCS/CIS/JAB family of cytokine signaling inhibitors is increased by PRL administration in ovary and adrenal gland of the lactating rat deprived of circulating PRL and pups for 24 h but not in mammary gland. Moreover, suckling increases SOCS mRNA in the ovary but not in the mammary gland of pup-deprived rats. Deprivation of PRL and pups for 48 h allows the mammary gland to induce SOCS genes in response to PRL administration, and this is associated with a decrease in basal SOCS-3 mRNA and protein expression to the level seen in other tissues, suggesting that SOCS-3 induced refractoriness related to filling of the gland. In reporter assays, SOCS-1, SOCS-3, and CIS, but not SOCS-2, are able to inhibit transactivation of the STAT 5-responsive beta -lactoglobulin promoter in transient transfection assays. Moreover, suckling results in loss of ovarian and adrenal responsiveness to PRL administered 2 h after commencement of suckling, as determined by STAT 5 gel shift assay. Immunohistochemistry was used to localize the cellular sites of SOCS-3 and CIS protein expression in the ovary and adrenal gland. We propose that induced SOCS-1, SOCS-3, and CIS are actively involved in the cellular inhibitory feedback response to physiological PRL surges in the corpus luteum and adrenal cortex during lactation, but after pup withdrawal, the mammary gland is rendered unresponsive to PRL by increased levels of SOCS-3.
Resumo:
Ovarian adenocarcinomas develop as the result of multiple genetic, and epigenetic changes in the precursor ovarian surface epithelial (OSE) cells which result in a malignant phenotype. We investigated changes in gene expression in ovarian adenocarcinoma using a cDNA array containing 588 known human genes. We found that intercellular adhesion molecule-1 (ICAM-1) was expressed at lower levels in the ovarian tumour cell lines OAW42, PEO1 and JAM than in the immortalised human ovarian surface epithelial cell line HOSE 17.1. Further investigation revealed ICAM-1 was expressed in the surface epithelium of normal ovaries and both mRNA and protein expression levels were reduced in the majority of ovarian adenocarcinoma cell lines and primary tumours. ICAM-1 expression was increased in 8/8 cell lines treated with the de novo methyltransferase inhibitor 5-aza-2'-deoxycytidiine, indicating that methylation of CpG islands may play a role in the down-regulation of its expression in primary tumours. 'There was a significant association between patients whose tumours expressed ICAM-1 and survival (P = 0.03), suggesting that expression levels of ICAM-1 may have clinical relevance. (C) 2001 Cancer Research Campaign.
Resumo:
Frizzled genes encode a family of Wnt ligand receptors, which have a conserved cysteine-rich Wnt binding domain and include both transmembrane and secreted forms. Work by others has shown that experimental perturbation of Wnt signaling results in aberrant hair formation, hair growth, and hair structure. To date, however, there is no information on the contribution of individual Frizzled proteins to hair development. We now report that Frizzled-3 expression in skin is restricted to the epidermis and to the developing hair follicle. Northern analysis on total mouse skin mRNA revealed a single Frizzled-3 transcript of 3.7 kb. Reverse transcription-polymerase chain reaction and in situ hybridization analysis revealed Frizzled-3 expression in epidermal and hair follicle keratinocytes. Frizzled-3 transcripts are first detected in discrete foci in the developing epidermis of 13 d embryos and later in the hair follicle placodes of 15 d embryos, suggesting a role for this Frizzled isoform in follicle development. In 17 d embryos and id old newborn mice Frizzled-3 expression is limited to suprabasal keratinocytes and is not seen in pelage follicles until 3 d postpartum. In 7 d old neonatal skin, Frizzled-3 is expressed throughout the epidermis and in the outer cell layers of hair follicles. We have also identified the mRNA encoding human Frizzled-3 in epidermal keratinocytes and in the HaCaT keratinocyte cell line. Human Frizzled-3 mRNA encodes a 666 amino acid protein with 97.8% identity to the mouse protein. The human Frizzled-3 gene was mapped using a radiation-hybrid cell line panel to the short arm of chromosome 8 between the markers WI-1172 and WI-8496 near the loci for the Hypotrichosis of Marie Unna and Hairless genes.
Resumo:
The plasma membrane Ca2+ pump is a key regulator of cytosolic free Ca2+. Recent studies have demonstrated the dynamic expression of the plasma membrane Ca2+ pump in a variety of cell types. Furthermore, alterations in plasma membrane calcium pump activity have now been implicated in human disease. In this study, the development of a technique to quantitatively assess mRNA expression of the human plasma membrane Ca2+ ATPase (PMCA1) isoform of the plasma membrane Ca2+ pump, using a real-time reverse transcriptase-polymerase chain reaction (real-time RT-PCR) assay in a human breast epithelial cell line (MCF-7) is described. The sequences of the PMCA1 primers and probe for real-time RT-PCR are presented. The results also indicate that PMCA1 mRNA can be normalized to both 18S ribosomal RNA (18S rRNA) and human glyceraldehyde-3-phosphate dehydrogenase (hGAPDH) in MCF-7 cells. Real-time RT-PCR will be most useful in assessing PMCA1 mRNA expression in cases where only low amounts of RNA are available and/or when numerous samples must be assessed simultaneously. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Background/Aims: Hepatocellular carcinoma is a carcinoma malignancy and a major complication of untreated haemochromatosis. Encapsulation of liver tumours has been associated with a better prognosis and longer disease-free periods following resection, This study investigated the source of the tumour capsule in patients with haemochromatosis and coexisting hepatocellular carcinoma and examined potential factors influencing development. Methods: Five haemochromatosis patients with encapsulated hepatocellular carcinoma were studied. Myofibroblasts were identified using combined immunohistochemistry and in situ hybridisation for a-smooth muscle actin and procollagen alpha (1)(I) mRNA, respectively. Immunohistochemistry was also performed for transforming growth factor (TGF)-beta (1), platelet-derived growth factor (PDGF)-beta receptor and malondialdehyde. Results. Procollagen alpha (1)(I) mRNA co-localised to alpha -smooth muscle actin positive myofibroblasts. The number of myofibroblasts was maximal within the capsule and decreased away from the tumour. TGF-beta (1) protein was expressed in iron-loaded cells in non-tumour liver at the interface of tumour capsule. PDGF-beta receptor expression was observed in mesenchymal cells in the tumour capsule and in portal tracts. Malondialdehyde adducts were observed in the tumour, non-tumour tissue and in the capsule. Conclusions: This study provides evidence that myofibroblasts are the cell type responsible for collagen production within the tumour capsule surrounding hepatocellular carcinoma in haemochromatosis, The production of TGF-beta (1) by iron-loaded hepatic cells at the tumour capsule interface may perpetuate the myofibroblastic phenotype, resulting in, the formation of the tumour capsule.
Resumo:
Background & Aims: There is a significant relationship between inheritance of high transforming growth factor (TGF)-beta1 and angiotensinogen-producing genotypes and the development of progressive hepatic fibrosis in patients with chronic hepatitis C. In cardiac and renal fibrosis, TGF-beta1 production may be enhanced by angiotensin II, the principal effector molecule of the renin-angiotensin system. The aim of the present study was to determine the effects of the angiotensin converting enzyme inhibitor, captopril, on the progression of hepatic fibrosis in the rat bile duct ligation model. Methods: Rats were treated with captopril (100 mg kg(-1) day(-1)) commencing 1 or 2 weeks after bile duct ligation. Animals with bile duct ligation only and sham-operated animals sewed as controls. Four weeks after bile duct ligation, indices of fibrosis were assessed. Results: Cap topril treatment significantly reduced hepatic hydroxyproline levels, mean fibrosis score, steady state messenger RNA levels of TGF-beta1 and procollagen alpha1(I), and matrix metalloproteinase 2 and 9 activity. Conclusions: Captopril significantly attenuates the progression of hepatic fibrosis in the vat bile duct ligation model, and its effectiveness should be studied in human chronic liver diseases associated with progressive fibrosis.
Resumo:
The membrane-bound ceruloplasmin homolog hephaestin plays a critical role in intestinal iron absorption. The aims of this study were to clone the rat hephaestin gene and to examine its expression in the gastrointestinal tract in relation to other genes encoding iron transport proteins. The rat hephaestin gene was isolated from intestinal mRNA and was found to encode a protein 96% identical to mouse hephaestin. Analysis by ribonuclease protection assay and Western blotting showed that hephaestin was expressed at high levels throughout the small intestine and colon. Immunofluorescence localized the hephaestin protein to the mature villus enterocytes with little or no expression in the crypts. Variations in iron status had a small but nonsignificant effect on hephaestin expression in the duodenum. The high sequence conservation between rat and mouse hephaestin is consistent with this protein playing a central role in intestinal iron absorption, although its precise function remains to be determined.