822 resultados para laser optics
Resumo:
We have focused a beam (BL3) of FLASH (Free-electron LASer in Hamburg: lambda = 13.5 nm, pulse length 15 fs, pulse energy 10-40 mu J, 5Hz) using a fine polished off-axis parabola having a focal length of 270 mm and coated with a Mo/Si multilayer with an initial reflectivity of 67% at 13.5 nm. The OAP was mounted and aligned with a picomotor controlled six-axis gimbal. Beam imprints on poly(methyl methacrylate) -PMMA were used to measure focus and the focused beam was used to create isochoric heating of various slab targets. Results show the focal spot has a diameter of
Resumo:
An electrostatic trapping scheme for use in the study of light-induced dissociation of molecular ions is outlined. We present a detailed description of the electrostatic reflection storage device and specifically demonstrate its use in the preparation of a vibrationally cold ensemble of deuterium hydride (HD+) ions. By interacting an intense femtosecond laser with this target and detecting neutral fragmentation products, we are able to elucidate previously inaccessible dissociation dynamics for fundamental diatomics in intense laser fields. In this context, we present new results of intense field dissociation of HD+ which are interpreted in terms of recent theoretical calculations.
Resumo:
The proton radiography technique has been used to investigate the incidence of a 3 x10(19) W/cm(2) infrared pulse with a 125 mu m-diameter gold wire. The laser interaction is observed to drive the growth of a radial electric field similar to 10(10) V/m on the surface of the wire which rises and decays over a temporal window of 20 ps. Such studies of the ultrafast charging of a solid irradiated at high-intensity may be of relevance to schemes for laser-driven ion acceleration and the fast-ignitor concept for inertial confinement fusion.
Resumo:
Progress in the theoretical understanding of non-sequential double-ionization of atoms is reviewed from its beginnings with Kuchiev's work in the late 1980s and Corkum's work in the early 1990s to the present day. The crucial role of laboratory experiment as a persistent stimulus to theoretical endeavour is underlined but the predictive roles of simple, yet fundamental, theory and also of a full quantum mechanical description are not forgotten. A theoretical forward look is provided.
Resumo:
We report a new method which allows sequential and non-sequential double-ionization rates in laser-driven helium to be distinguished and calculated separately. The method is applied to calculate such rates for two laser pulses, one of 0.236 au frequency and 8.0 × 1015 W cm-2 peak intensity, the other of 1.0 au frequency and also of 8.0 × 1015 W cm-2 peak intensity.
Resumo:
A simple theoretical model is proposed for the interaction between two counter-propagating laser pulses (a pump and a seed pulse) in unmagnetized plasma. Pulse compression and amplification are observed via numerical simulation. A one dimensional fluid model for stimulated Raman backscattering is proposed to investigate the pulse compression and pulse amplification mechanisms. To accomplish this, energy is transferred from the long pump pulse to a seed pulse, with a Langmuir plasma wave mediating the transfer. The study focuses on the intensity profile of the pump laser pulse. A Gaussian and a ring intensity profile are, separately, considered for the pump laser pulse.
Resumo:
Light transmission through a single subwavelength aperture in a silver film is examined with a novel input configuration comprising an annular laser beam of variable diameter that is prism-coupled to the back face of the silver. Transmission peaks driven by excitation of the back-face surface plasmon mode or by the aperture resonance itself are separately observed. For both cases, comparison of films with and without a front-face, circular grating implies significantly more efficient coupling from the aperture fields to the front-face surface plasmon than directly to free radiation. (c) 2007 Optical Society of America.
Resumo:
A method for obtaining quantitative information about electric field and charge distributions from proton imaging measurements of laser-induced plasmas is presented. A parameterised charge distribution is used as target plasma. The deflection of a proton beam by the electric field of such a plasma is simulated numerically as well as the resulting proton density, which will be obtained on a screen behind the plasma according to the proton imaging technique. The parameters of the specific charge distributions are delivered by a combination of linear regression and nonlinear fitting of the calculated proton density distribution to the measured optical density of a radiochromic film screen changed by proton exposure. It is shown that superpositions of spherical Gaussian charge distributions as target plasma are sufficient to simulate various structures in proton imaging measurements, which makes this method very flexible.
Resumo:
We present an efficient and accurate method to study electron detachment from negative ions by a few-cycle linearly polarized laser pulse. The adiabatic saddle-point method of Gribakin and Kuchiev [Phys. Rev. A 55, 3760 (1997)] is adapted to calculate the transition amplitude for a short laser pulse. Its application to a pulse with N optical cycles produces 2(N + 1) saddle points in complex time, which form a characteristic "smile." Numerical calculations are performed for H(-) in a 5-cycle pulse with frequency 0.0043 a.u. and intensities of 10(10), 5 x 10(10), and 10(11) W/cm(2), and for various carrier-envelope phases. We determine the spectrum of the photoelectrons as a function of both energy and emission angle, as well as the angle-integrated energy spectra and total detachment probabilities. Our calculations show that the dominant contribution to the transition amplitude is given by 5-6 central saddle points, which correspond to the strongest part of the pulse. We examine the dependence of the photoelectron angular distributions on the carrier-envelope phase and show that measuring such distributions can provide a way of determining this phase.
Resumo:
In a recent experimental study, the beam intensity profile of the Vulcan petawatt laser beam was measured; it was found that only 20% of the energy was contained within the full width at half maximum of 6.9 mu m and 50% within 16 mu m, suggesting a long-tailed non-Gaussian transverse beam profile. A q-Gaussian distribution function was suggested therein to reproduce this behavior. The spatial beam profile dynamics of a q-Gaussian laser beam propagating in relativistic plasma is investigated in this article. A non-paraxial theory is employed, taking into account nonlinearity via the relativistic decrease of the plasma frequency. We have studied analytically and numerically the dynamics of a relativistically guided beam and its dependence on the q-parameter. Numerical simulation results are shown to trace the dependence of the focusing length on the q-Gaussian profile.
Resumo:
We present a simple quantum mechanical model to describe Coulomb explosion of H-2(+) and D-2(+) by short, intense infrared laser pulses. The model is based on the length gauge version of the molecular strong-field approximation and is valid when the process of dissociation prior to ionization is negligible. The results are compared with recent experimental data for the proton kinetic energy spectrum [Th. Ergler , Phys. Rev. Lett. 95, 093001 (2005); D. S. Murphy , J. Phys. B 40, S359 (2007)]. Using a Franck-Condon distribution over initial vibrational states, the theory reproduces the overall shape of the spectrum with only a small overestimation of slow protons. The agreement between theory and experiment can be made perfect by using a non-Frank-Condon initial distribution characteristic for H-2(+) (D-2(+)) targets produced by strong-field ionization of H-2 (D-2). For comparison, we also present results obtained by two different tunneling models for this process.
Resumo:
We present an experimental demonstration of nonresonant manipulation of vibrational states in a molecule by an intense ultrashort laser pulse. A vibrational wave packet is generated in D-2(+) through tunnel ionization of D-2 by a few-cycle pump pulse. A similar control pulse is applied as the wave packet begins to dephase so that the dynamic Stark effect distorts the electronic environment of the nuclei, transferring vibrational population. The time evolution of the modified wave packet is probed via the D-2(+) photodissociation yield that results from the application of an intense probe pulse. Comparing the measured yield with a quasiclassical trajectory model allows us to determine the redistribution of vibrational population caused by the control pulse. ©