744 resultados para ionic liquid
Resumo:
Various room temperature ionic liquids (RTILs), notably, 1-methoxyethyl-3-methylimidazolium trifluoroacetate [MeOEtMIM]+[CF3COO]ˉ , have been used to promote the Knoevenagel condensation to afford substituted olefins. All reactions proceeded effectively in the absence of any other catalysts or co-solvents with good to excellent yields. This method is simple and applicable to reactions involving a wide range of aldehydes and ketones with methylene compounds. The ionic liquid can be recycled without noticeable reduction of its catalytic activity. A plausible reaction mechanism is proposed.
Resumo:
A modified UNIFAC–VISCO group contribution method was developed for the correlation and prediction of viscosity of ionic liquids as a function of temperature at 0.1 MPa. In this original approach, cations and anions were regarded as peculiar molecular groups. The significance of this approach comes from the ability to calculate the viscosity of mixtures of ionic liquids as well as pure ionic liquids. Binary interaction parameters for selected cations and anions were determined by fitting the experimental viscosity data available in literature for selected ionic liquids. The temperature dependence on the viscosity of the cations and anions were fitted to a Vogel–Fulcher–Tamman behavior. Binary interaction parameters and VFT type fitting parameters were then used to determine the viscosity of pure and mixtures of ionic liquids with different combinations of cations and anions to ensure the validity of the prediction method. Consequently, the viscosities of binary ionic liquid mixtures were then calculated by using this prediction method. In this work, the viscosity data of pure ionic liquids and of binary mixtures of ionic liquids are successfully calculated from 293.15 K to 363.15 K at 0.1 MPa. All calculated viscosity data showed excellent agreement with experimental data with a relative absolute average deviation lower than 1.7%.
Resumo:
Baeyer–Villiger oxidation of cyclic ketones, using H2O2 as the oxidising agent, was systematically studied using a range of metal chlorides in different solvents, and in neat chlorogallate(III) ionic liquids. The extremely high activity of GaCl3 in promoting oxidation with H2O2, irrespective of solvent, was reported for the first time. The activity of all other metal chlorides was strongly solvent-dependent. In particular, AlCl3 was very active in a protic solvent (ethanol), and tin chlorides, SnCl4 and SnCl2, were active in aprotic solvents (toluene and dioxane). In order to eliminate the need for volatile organic solvent, a Lewis acidic chlorogallate(III) ionic liquid was used in the place of GaCl3, which afforded typically 89–94% yields of lactones in 1–120 min, at ambient conditions. Raman and 71Ga NMR spectroscopic studies suggest that the active species, in both GaCl3 and chlorogallate(III) ionic liquid systems, are chlorohydroxygallate(III) anions, [GaCl3OH]−, which are the products of partial hydrolysis of GaCl3 and chlorogallate(III) anions; therefore, the presence of water is crucial.
Resumo:
The local solvation environment of uracil dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate has been studied using neutron diffraction techniques. At solvent:solute ratios of 3:1 and 2:1 ionic liquid:uracil, little perturbation of the ion-ion correlations compared to those of the neat ionic liquid are observed. We find that solvation of the uracil is driven predominantly by the acetate anion of the solvent. While short distance correlations exist between uracil and the imidazolium cation, the geometry of these contacts suggest that they cannot be considered as hydrogen bonds, in contrast to other studies by Araújo et al. (J. M. Araújo, A. B. Pereiro, J. N. Canongia-Lopes, L. P. Rebelo, I. M. Marrucho, J. Phys. Chem. B 2013, 117, 4109-4120). Nevertheless, this combination of interactions of the solute with both the cation and anion components of the solvents helps explain the high solubility of the nucleobase in this media. In addition, favorable uracil-uracil contacts are observed, of similar magnitude to those between cation and uracil, and are also likely to aid dissolution
Resumo:
Microwave synthesis is shown to be a valuable route to novel fluorinated ionic liquid surfactants. 1-Methyl-3-(3,3,4,4,5,5,6,6,6-nonafluorohexyl)imidazolium iodide was prepared by treatment of 1-methylimidazole with 1-iodo-1H,1H,2H,2H-perfluorohexane in a microwave reactor, and this product underwent anion exchange to yield 1-methyl-3-(3,3,4,4,5,5,6,6,6-nonafluorohexyl)imidazolium nonafluoro-1-butanesulfonate. This catanionic surfactant showed intriguing phase behavior and low surface tension.
Resumo:
When organic esters or alcohols were dissolved in each of three novel ionic liquids (which have no effective vapour pressure), the vapour–liquid equilibria (as measured by infrared spectroscopy of the gas phase) revealed significant positive deviation from Raoult’s law for a wide range of perfume raw materials. The addition of water amplified the repulsive effect of the ionic liquid matrix, and this was exemplified by a series of ternary phase diagrams
Resumo:
Biodiesel is an alternative diesel fuel that is produced from vegetable oils and animal fats. Currently, most biodiesel is made from oils, methanol, and an alkaline catalyst. Conventional catalysts is commonly used for catalyzing esterification of fatty acid to produce biodiesel. However, a better and greener method was found. An ionic liquid (IL) is a molten salt consisting of a cation and an anion, with low melting temperature. It offers a better solution than sulfuric acid, because it can be recycled and reused in subsequent runs after recovery steps. In this study, a Brønsted acidic IL, 1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM][HSO4]) was used as a catalyst in the esterification of oleic acid with methanol into biodiesel. The effect of different operation parameters such as methanol to oil molar ratio, amount of catalyst, reaction temperature, and reaction time were tested. The optimum conditions for esterification of oleic acid were identified as oleic acid/methanol molar ratio of 1/10, amount of catalyst 10 wt%, reaction time of 4 h, and reaction temperature of 90oC. FAME content of produced biodiesel was analyzed and confirmed using GC chromatography.
Resumo:
The vapor liquid-equilibrium of water + ionic liquids is relevant for a wide range of applications of these compounds. It is usually measured by ebulliometric techniques, but these are time consuming and expensive. In this work it is shown that the activity coefficients of water in a series of cholinium-based ionic liquids can be reliably and quickly estimated at 298.15K using a humidity meter instrument. The cholinium based ionic liquids were chosen to test this experimental methodology since data for water activities of quaternary ammonium salts are available in the literature allowing the validation of the proposed technique. The COSMO-RS method provides a reliable description of the data and was also used to understand the molecular interactions occurring on these binary systems. The estimated excess enthalpies indicate that hydrogen bonding between water and ionic liquid anion is the dominant interaction that governs the behavior of water and cholinium-based ionic liquids systems, while the electrostatic-misfit and van der Walls forces have a minor contribution to the total excess enthalpies.
Resumo:
In this work, ionic liquids are evaluated for the first time as solvents for extraction and entrainers in separation processes involving terpenes and terpenoids. For that purpose, activity coefficients at infinite dilution, γ13 ∞, of terpenes and terpenoids, in the ionic liquids [C4mim]Cl, [C4mim][CH3SO3], [C4mim][(CH3)2PO4] and [C4mim][CF3SO3] were determined by gas−liquid chromatography at six temperatures in the range 398.15 to 448.15 K. On the basis of the experimental values, a correlation of γ13 ∞ with an increase of the solubility parameters is proposed. The infinite dilution thermodynamic functions were calculated showing the entropic effect is dominant over the enthalpic. Gas−liquid partition coefficients give indications about the recovery and purification of terpenes and terpenoids from ionic liquid solutions. Presenting a strong innovative character, COSMO-RS was evaluated for the description of the selectivities and capacities, showing to be a useful tool for the screening of ionic liquids in order to find suitable candidates for terpenes and terpenoids extraction, and separation. COSMO-RS predictions show that in order to achieve the maximum separation efficiency, polar anions should be used such as bis(2,4,4-trimethylpentyl)phosphinate or acetate, whereas high capacities require nonpolar cations such as phosphonium.
Resumo:
The direct CO2 electrochemical reduction on model platinum single crystal electrodes Pt(hkl) is studied in [C2mim+][NTf2−], a suitable room temperature ionic liquid (RTIL) medium due to its moderate viscosity, high CO2 solubility and conductivity. Single crystal electrodes represent the most convenient type of surface structured electrodes for studying the impact of RTIL ion adsorption on relevant electrocatalytic reactions, such as surface sensitive electrochemical CO2 reduction. We propose here based on cyclic voltammetry and in situ electrolysis measurements, for the first time, the formation of a stable adduct [C2mimH–CO2−] by a radical–radical coupling after the simultaneous reduction of CO2 and [C2mim+]. It means between the CO2 radical anion and the radical formed from the reduction of the cation [C2mim+] before forming the corresponding electrogenerated carbene. This is confirmed by the voltammetric study of a model imidazolium-2-carboxylate compound formed following the carbene pathway. The formation of that stable adduct [C2mimH–CO2−] blocks CO2 reduction after a single electron transfer and inhibits CO2 and imidazolium dimerization reactions. However, the electrochemical reduction of CO2 under those conditions provokes the electrochemical cathodic degradation of the imidazolium based RTIL. This important limitation in CO2 recycling by direct electrochemical reduction is overcome by adding a strong acid, [H+][NTf2−], into solution. Then, protons become preferentially adsorbed on the electrode surface by displacing the imidazolium cations and inhibiting their electrochemical reduction. This fact allows the surface sensitive electro-synthesis of HCOOH from CO2 reduction in [C2mim+][NTf2−], with Pt(110) being the most active electrode studied.
Resumo:
Fixed-bed thermodynamic CO2 adsorption tests were performed in model flue-gas onto Filtrasorb 400 and Nuchar RGC30 activated carbons (AC) functionalized with [Hmim][BF4] and [Emim][Gly] ionic liquids (IL). A comparative analysis of the CO2 capture results and N2 porosity characterization data evidenced that the use of [Hmim][BF4], a physical solvent for carbon dioxide, ended up into a worsening of the parent AC capture performance, due to a dominating pore blocking effect at all the operating temperatures. Conversely, the less sterically-hindered and amino acid-based [Emim][Gly] IL was effective in increasing the AC capture capacity at 353 K under milder impregnation conditions, the beneficial effect being attributed to both its chemical affinity towards CO2 and low pore volume reduction. The findings derived in this work outline interesting perspectives for the application of amino acid-based IL supported onto activated carbons for CO2 separation under post-combustion conditions, and future research efforts should be focused on the search for AC characterized by optimal pore size distribution and surface properties for IL functionalization.
Resumo:
The ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc) is considered to be an inert solvent of cellulose and lignocellulosic biomass. Acetylation (1.7 % mol, or DS 0.017) of cellulose after dissolution in [C2mim]OAc (150 °C for 20 min), is demonstrated by compositional analysis, FTIR analysis and 13C NMR spectroscopy (in [C2min]OAc with 13C enriched acetate). This acetylation, in the absence of added acylating agents, has not been reported before and may limit [C2mim]OAc utility in industrial scale biomass processing, even at this low extent. For example, cellulose acetylation may contribute to IL loss in processes where the IL is recovered and reused and inhibit enzyme saccharification of cellulose in lignocellulosic biofuel production processes based on saccharification and fermentation.
Resumo:
Chemical reaction studies of N-methyl-N-propyl-pyrrolidinium-bis(fluorosulfonyl)imide-based ionic liquid with the lithium metal surface were performed using ab initio molecular dynamics (aMD) simulations and X-ray Photoelectron Spectroscopy (XPS). The molecular dynamics simulations showed rapid and spontaneous decomposition of the ionic liquid anion, with subsequent formation of long-lived species such as lithium fluoride. The simulations also revealed the cation to retain its structure by generally moving away from the lithium surface. The XPS experiments showed evidence of decomposition of the anion, consistent with the aMD simulations and also of cation decomposition and it is envisaged that this is due to the longer time scale for the XPS experiment compared to the time scale of the aMD simulation. Overall experimental results confirm the majority of species suggested by the simulation. The rapid chemical decomposition of the ionic liquid was shown to form a solid electrolyte interphase composed of the breakdown products of the ionic liquid components in the absence of an applied voltage.
Resumo:
The use of capacitors for electrical energy storage actually predates the invention of the battery. Alessandro Volta is attributed with the invention of the battery in 1800, where he first describes a battery as an assembly of plates of two different materials (such as copper and zinc) placed in an alternating stack and separated by paper soaked in brine or vinegar [1]. Accordingly, this device was referred to as Volta’s pile and formed the basis of subsequent revolutionary research and discoveries on the chemical origin of electricity. Before the advent of Volta’s pile, however, eighteenth century researchers relied on the use of Leyden jars as a source of electrical energy. Built in the mid-1700s at the University of Leyden in Holland, a Leyden jar is an early capacitor consisting of a glass jar coated inside and outside with a thin layer of silver foil [2, 3]. With the outer foil being grounded, the inner foil could be charged with an electrostatic generator, or a source of static electricity, and could produce a strong electrical discharge from a small and comparatively simple device.