869 resultados para height partition clustering
Resumo:
This paper describes the computation of stress intensity factors (SIFs) for cracks in functionally graded materials (FGMs) using an extended element-free Galerkin (XEFG) method. The SIFs are extracted through the crack closure integral (CCI) with a local smoothing technique, non-equilibrium and incompatibility formulations of the interaction integral and the displacement method. The results for mode I and mixed mode case studies are presented and compared with those available in the literature. They are found to be in good agreement where the average absolute error for the CCI with local smoothing, despite its simplicity, yielded a high level of accuracy.
Resumo:
Despite its benefits, co-ownership of land creates problems where relations between the parties
have soured, or one person simply wants to extricate themselves from this arrangement. The
remedies of compulsory partition and sale allow one joint tenant or tenant in common to terminate
co-ownership against the wishes of the others, by seeking a court order to this effect. Throughout
parts of the common law world, this has be en based on nineteenth century English legislation namely
the Partition Act 1868, the key elements of which remain in force in Western Australia,
South Australia, Tasmania and the Australian Capital Territory. This article provides an up-to-date
analysis of the law on compulsory partition and sale as derived from the 1868 Act and analogous
provisions, drawing not only on Australian cases, but on frequently overlooked decisions from
courts in both parts of Ireland and in parts of Canada, as well as ‘old’ English judgments on the
1868 Act.
Resumo:
Purpose: The authors estimated the retinal nerve fiber layer height (RNFLH) measurements in patients with glaucoma compared with those in age-matched healthy subjects as obtained by the laser scanning tomography and assessed the relationship between RNFLH measurements and optic and visual field status. Methods: Parameters of optic nerve head topography and RNFLH were evaluated in 125 eyes of 21 healthy subjects and 104 patients with glaucoma using the Heidelberg Retina Tomograph ([HRT] Heidelberg Engineering GmbH, Heidelberg, Germany) for the entire disc area and for the superior 70°(50°temporal and 20°nasal to the vertical midline) and inferior 70°sectors of the optic disc. The mean deviation of the visual field, as determined by the Humphrey program 24-2 (Humphrey Instruments, Inc., San Leonardo, CA, U.S.A) was calculated in the entire field and in the superior and inferior Bjerrum area. Result: Retinal nerve fiber layer height parameters (mean RNFLH and RNFL cross-sectional area) were decreased significantly in patients with glaucoma compared with healthy individuals. Retinal nerve fiber layer height parameters was correlated strongly with rim volume, rim area, and cup/disc area ratio. Of the various topography measures, retinal nerve fiber layer (RNFL) parameters and cup/disc area ratio showed the strongest correlation with visual field mean deviation in patients with glaucoma. Conclusion: Retinal nerve fiber layer height measures were reduced substantially in patients with glaucoma compared with age-matched healthy subjects. Retinal nerve fiber layer height was correlated strongly with topographic optic disc parameters and visual field changes in patients with glaucoma.
Resumo:
Steady simulations were performed to investigate tip leakage flow and heat transfer characteristics on the rotor blade tip and casing in a single-stage gas turbine engine. A typical high-pressure gas turbine stage was modeled with a pressure ratio of 3.2. The predicted isentropic Mach number and adiabatic wall temperature on the casing showed good agreement with available experimental data under similar operating condition. The present numerical study focuses extensively on the effects of tip clearance heights and rotor rotational speeds on the blade tip and casing heat transfer characteristics. It was observed that the tip leakage flow structure is highly dependent on the height of the tip gap and the speed of the rotor. In all cases, the tip leakage flow was seen to separate and recirculate just around the corner of the pressure side of the blade tip. This region of re-circulating flow enlarges with increasing clearance heights. The separated leakage flow reattaches afterwards on the tip surface. Leakage flow reattachment was shown to enhance surface heat transfer at the tip. The interaction between tip leakage flow and secondary flows that is induced by the relative casing motion is found to significantly influence the blade tip and casing heat transfer distribution. A region of critical heat transfer exists on the casing near the blade tip leading edge and along the pressure-side edge for all the clearance heights that were investigated. At high rotation speed, the region of critical heat transfer tends to move towards the trailing edge due to the change in inflow angle.
Resumo:
The effects of module shape, module design, three dimensional flow field generated by modules, and partition of primary nozzle on the performance of an infinite array linear clustered plug nozzle are discussed. The module shape is a critical element for nozzle performance and the partition of the primary nozzle with round-to square modules causes a vacuum thrust reduction with respect to two-dimensional model. The performance analysis of different module configuration allows weighing separately the role of clustering and the role of module design. In operating conditions characterized by turned off modules the performance loss is larger, but the difference due to the module shape are smaller and mostly due to the module contribution. The performance of the plug nozzle can be improved by module design, which reduces the module exit flow nonuniformity.
Resumo:
This study investigates the coefficient of variation (CV) of height of males and females as a measure of inequality. We have collected a data set on corresponding male and female height CVs from 124 populations, spanning the period between the 1840s and 1980s. The results suggest that the R2 between the two CVs is 0.39, with the male CV being greater, indicating higher plasticity.
Resumo:
Average height is an important indicator of people’s well-being. It is also a relatively undistorted and easy-to-measure indicator, which makes it particularly suitable for comparisons across time and space. Drawing upon an extensive body of research, the chapter describes the strengths and weaknesses of this indicator. It finds that during the 19th century, average height in Western Offshoots was much higher than elsewhere. Differences between Western Europe and the rest of the world (Eastern Europe, East Asia) were marginal, in spite of the much higher real incomes in the former region. This changed after about 1870, when people’s height began to increase in Western Europe, whereas this lagged behind elsewhere. Africans were relatively tall during much of the period studied, but experienced declining height in many countries after the 1960s. People in Southeast Asia stayed relatively short throughout the period.
Resumo:
The quantity and quality of spatial data are increasing rapidly. This is particularly evident in the case of movement data. Devices capable of accurately recording the position of moving entities have become ubiquitous and created an abundance of movement data. Valuable knowledge concerning processes occurring in the physical world can be extracted from these large movement data sets. Geovisual analytics offers powerful techniques to achieve this. This article describes a new geovisual analytics tool specifically designed for movement data. The tool features the classic space-time cube augmented with a novel clustering approach to identify common behaviour. These techniques were used to analyse pedestrian movement in a city environment which revealed the effectiveness of the tool for identifying spatiotemporal patterns. © 2014 Taylor & Francis.
Resumo:
Recent technological advances have increased the quantity of movement data being recorded. While valuable knowledge can be gained by analysing such data, its sheer volume creates challenges. Geovisual analytics, which helps the human cognition process by using tools to reason about data, offers powerful techniques to resolve these challenges. This paper introduces such a geovisual analytics environment for exploring movement trajectories, which provides visualisation interfaces, based on the classic space-time cube. Additionally, a new approach, using the mathematical description of motion within a space-time cube, is used to determine the similarity of trajectories and forms the basis for clustering them. These techniques were used to analyse pedestrian movement. The results reveal interesting and useful spatiotemporal patterns and clusters of pedestrians exhibiting similar behaviour.
Resumo:
Increasingly semiconductor manufacturers are exploring opportunities for virtual metrology (VM) enabled process monitoring and control as a means of reducing non-value added metrology and achieving ever more demanding wafer fabrication tolerances. However, developing robust, reliable and interpretable VM models can be very challenging due to the highly correlated input space often associated with the underpinning data sets. A particularly pertinent example is etch rate prediction of plasma etch processes from multichannel optical emission spectroscopy data. This paper proposes a novel input-clustering based forward stepwise regression methodology for VM model building in such highly correlated input spaces. Max Separation Clustering (MSC) is employed as a pre-processing step to identify a reduced srt of well-conditioned, representative variables that can then be used as inputs to state-of-the-art model building techniques such as Forward Selection Regression (FSR), Ridge regression, LASSO and Forward Selection Ridge Regression (FCRR). The methodology is validated on a benchmark semiconductor plasma etch dataset and the results obtained are compared with those achieved when the state-of-art approaches are applied directly to the data without the MSC pre-processing step. Significant performance improvements are observed when MSC is combined with FSR (13%) and FSRR (8.5%), but not with Ridge Regression (-1%) or LASSO (-32%). The optimal VM results are obtained using the MSC-FSR and MSC-FSRR generated models. © 2012 IEEE.
Resumo:
Regulatory and coding variants are known to be enriched with associations identified by genome-wide association studies (GWASs) of complex disease, but their contributions to trait heritability are currently unknown. We applied variance-component methods to imputed genotype data for 11 common diseases to partition the heritability explained by genotyped SNPs () across functional categories (while accounting for shared variance due to linkage disequilibrium). Extensive simulations showed that in contrast to current estimates from GWAS summary statistics, the variance-component approach partitions heritability accurately under a wide range of complex-disease architectures. Across the 11 diseases DNaseI hypersensitivity sites (DHSs) from 217 cell types spanned 16% of imputed SNPs (and 24% of genotyped SNPs) but explained an average of 79% (SE = 8%) of from imputed SNPs (5.1× enrichment; p = 3.7 × 10−17) and 38% (SE = 4%) of from genotyped SNPs (1.6× enrichment, p = 1.0 × 10−4). Further enrichment was observed at enhancer DHSs and cell-type-specific DHSs. In contrast, coding variants, which span 1% of the genome, explained <10% of despite having the highest enrichment. We replicated these findings but found no significant contribution from rare coding variants in independent schizophrenia cohorts genotyped on GWAS and exome chips. Our results highlight the value of analyzing components of heritability to unravel the functional architecture of common disease.
Resumo:
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated 1/42,000, 1/43,700 and 1/49,500 SNPs explained 1/421%, 1/424% and 1/429% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/I 2-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.