927 resultados para glass-ionomer-resin composite hybrid material
Resumo:
Objective: The aim of this study was to assess the bond strength of adhesive systems to dentin contaminated by temporary cements with or without eugenol. Method: Flat dentin surfaces were obtained from twenty-four human third molars. With exception of the control group (n=8), the surfaces were covered with Interim Restorative Material (Caulk Dentsplay, Milford, DE, USA) or Cavit (3M ESPE, St. Paul, MN, USA) and kept in an oven at 37°C for seven days. After removing the cements, the adhesive systems Adper Single Bond (3M ESPE, St. Paul, MN, USA) or Clearfil SE Bond (Kuraray Co. Ltd., Osaka, Japan) were applied in accordance with the manufacturers' recommendations, and then the crowns were constructed in of resin composite. The teeth were sectioned into specimens with a cross-sectional bond area of 0.81mm2, which were submitted to microtensile testing in a mechanical test machine at an actuator speed of 0.5mm/min. The data were analyzed by t- and ANOVA tests, complemented by Tukey tests (α=0.05). Results: For Adper Single Bond (3M ESPE, St. Paul, MN, USA), bond strength did not differ statistically (p>0.05) for all the experimental conditions. For Clearfil SE Bond (Kuraray Co. Ltd., Osaka, Japan), only the Interim Restorative Material (Caulk Dentsplay, Milford, DE, USA) Group showed significantly lower bond strength (30.1 ± 13.8 MPa) in comparison with the other groups; control (38.9 ± 13.5 MPa) and Cavit (3M ESPE, St. Paul, MN, USA) (42.1 ± 11.0 MPa), which showed no significant difference between them. Conclusion: It was concluded that the previous covering of dentin with temporary cement containing eugenol had a deleterious effect on the adhesive performance of the self-etching system only.
Resumo:
Objectives: The aim of this study was to evaluate the effect of different seating forces during cementation in cement-ceramic microtensile bond strength (μTBS). Materials and methods: Forty-five blocks (5 × 5 × 4 mm3) of a glass-infiltrated alumina-based ceramic (In-Ceram Alumina) were fabricated according to the manufacturer's instructions and duplicated in resin composite. Ceramic surfaces were polished, cleaned for 10 min in an ultrasonic bath, silica coated using a laboratory type of air abrasion device, and silanized. Each treated ceramic block was then randomly assigned to five groups (n = 9) and cemented to a composite block under five seating forces (10 g, 50 g, 100 g, 500 g, and 750 g) using a dual-cured resin cement (Panavia F). The ceramic-cement-composite assemblies were cut under coolant water to obtain bar specimens (1 mm × 0. 8 mm2). The μTBS tests were performed in a universal testing machine (1 mm/min). The mean bond strengths values were statistically analyzed using one-way ANOVA (α ≤ 0. 05). Results: Different seating forces resulted in no significant difference in the μTBS results ranging between 13. 1 ± 4. 7 and 18. 8 ± 2. 1 MPa (p = 0. 13) and no significant differences among cement thickness. Conclusions: Excessive seating forces during cementation seem not to affect the μTBS results. Clinical relevance: Excessive forces during the seating of single all-ceramic restorations cementation seem to display the same tensile bond strength to the resin cement. © 2012 Springer-Verlag.
Resumo:
Objective: This study investigated the effect of experimental photopolymerized coatings, containing zwitterionic or hydrophilic monomers, on the hydrophobicity of a denture base acrylic resin and on Candida albicans adhesion. Methods: Acrylic specimens were prepared with rough and smooth surfaces and were either left untreated (control) or coated with one of the following experimental coatings: 2-hydroxyethyl methacrylate (HE); 3-hydroxypropyl methacrylate (HP); and 2-trimethylammonium ethyl methacrylate chloride (T); and sulfobetaine methacrylate (S). The concentrations of these constituent monomers were 25%, 30% or 35%. Half of the specimens in each group (control and experimentals) were coated with saliva and the other half remained uncoated. The surface free energy of all specimens was measured, regardless of the experimental condition. C. albicans adhesion was evaluated for all specimens, both saliva conditioned and unconditioned. The adhesion test was performed by incubating specimens in C. albicans suspensions (1 × 10 7 cell/mL) at 37 °C for 90 min. The number of adhered yeasts were evaluated by XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-5-[{phenylamino} carbonyl]-2H-tetrazolium-hydroxide) method. Results: For rough surfaces, coatings S (30 or 35%) and HP (30%) resulted in lower absorbance values compared to control. These coatings exhibited more hydrophilic surfaces than the control group. Roughness increased the adhesion only in the control group, and saliva did not influence the adhesion. The photoelectron spectroscopy analysis (XPS) confirmed the chemical changes of the experimental specimens, particularly for HP and S coatings. Conclusions: S and HP coatings reduced significantly the adhesion of C. albicans to the acrylic resin and could be considered as a potential preventive treatment for denture stomatitis. © 2012 Elsevier Ltd.
Resumo:
Objectives: To evaluate the effects of surface treatment, surface hydration (SH) and application method (AM) on the tensile bond strength of the Silorane Adhesive System (SAS) to dentine. Methods: Ninety bovine teeth were used. For the control group (n = 10), each dentine surface was treated according to the manufacturer's instructions of the SAS. The remaining teeth were randomly distributed into two groups (n = 40), according to the type of dentine surface treatment (ST) - 37% phosphoric acid or Er:YAG Laser prior to the application of the SAS. Each group was further divided into 2 subgroups (n = 20), according to the SH status: dry (D) or wet (W). Each subgroup was further divided into 2 subgroups (n = 10), according to the application method [AM: Active (AC) mode or Passive (PA) mode]. A coat of resin composite (Filtek P90) was applied on the surface. Artificial ageing was performed with a thermo-mechanical cycling machine. The specimens were sectioned into 1 mm × 1 mm × 10 mm sticks and stressed to failure using a universal testing machine. The remaining teeth in each group were used for Scanning Electron Microscopy to examine the fractured area. Data were subjected to a three-way ANOVA, Tukey's test and Dunnet's test (α = 0.05). Results: The ANOVA showed significant differences for SH and AM, but not for ST. For SH, the results of Tukey's test were (in MPa): D-14.9(±3.8)a, W-17.1(±4.3)b; and for AM: PA-14. 9(±4.2)a, AC-17.1(±3.9) b. Conclusions: Acid etching, when combined with a moist dentine surface and the use of primer agitation, improves the bond strength of the SAS to dentine. Clinical Significance: According to the results of the present in vitro study, modification of the application protocols for the silorane-based adhesive system may improve its clinical performance. © 2012 Published by Elsevier Ltd.
Resumo:
Rare earth complexes (RE) can be incorporated in silica matrixes, originating organic/inorganic hybrid materials with good thermal stability and high rare earth emission lines. In this work, the hybrid material was obtained by the polymeric precursor method and ultrasonic dispersed with spherical silica particles prepared by the Stöber Method. The Raman spectra indicated that the Eu3+ ions are involved in a polymeric structure formed as consequence of the chelation and polyesterification reactions of this ion with citric acid and ethylene glycol. After the ultrasonic stirring, 2-hydroxynicotinic ligand will also compose this polymeric rigid structure. The TGA/DTA analysis showed that this polymeric material was thermal decomposed at 300 °C. Moreover, this process allows the chelating process of the 2-hydroxynicotinic acid ligand to the Eu3+ ions. The 29Si NMR showed that the ultrasonic dispersion of the reactants was not able to promote the functionalization of the silica particles with the 2-hydroxynicotinic acid ligand. Moreover, heat treatment promotes the [Eu(HnicO2)3] complex particles incorporation into silica pores. At this temperature, the TGA curve showed that only the thermal degradation of ethylene glycol and citric acid used during the experimental procedure occurs. The silica and hybrid materials are composed by spherical and aggregated particles with particle size of approximately 450 nm, which can be influenced by the heat treatment. These materials also present an absorption band located at 337 nm. The photoluminescent study showed that when the hybrid samples were excited at 337 nm wavelength, the ligand absorbs the excitation light. Part of this energy is transferred to the Eu3+ ion, which main emission, 5D0→ 7F2, is observed in the emission spectrum at 612 nm. As the heating temperature increases to 300 C, the energy transfer is more favorable. The lifetime values showed that the Eu3+ emission is enhanced due to the energy transfer process in the powders. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Objectives: This study evaluated the microtensile bond strength (MTBS) of non-aged and aged resin-based composites (RBC) (nanohybrid and nanofilled) after two surface conditioning methods, repaired using the composite of the same kind or a microhybrid composite. Materials and methods: Nanohybrid (Tetric EvoCeram-TE) and nanofilled (Filtek Supreme-FS) RBC blocks (5 × 5 × 6 mm) (N = 128) were fabricated and randomly divided into two groups: (a) no ageing (control group) and (b) ageing (5.000 thermocycling, 5-55 °C). RBC surfaces were polished by up to 1,200-grit silicone carbide papers and conditioned with either (a) air abrasion with 30-μm SiO2 particles (CoJet Sand) for 4 s + silane coupling agent (ESPE-Sil) + adhesive resin (VisioBond) (n = 16) or (b) adhesive application only (Multilink A+B for TE; Adper ScotchBond 1XT for FS) (n = 16). In half of the groups, repair resin of the same kind with the RBC and, in the other half, a different kind of composite (microhybrid, Quadrant Anterior Shine-AS) with its corresponding adhesive (Quadrant UniBond) was used. The specimens were submitted to MTBS test (0.5 mm/min). Data were analysed using three-way ANOVA and Tukey's tests. Degree of conversion (DC) of non-aged and aged resin composites (TE, FS) (n = 3 per group) was measured by micro-Raman analyses. Results: RBC type (p = 0.001) and ageing affected the MTBS results significantly (p = 0.001). Surface conditioning type did not show significant difference (p = 0.726), but less number of pre-test failures was experienced with the CoJet system compared to adhesive resin application only. Repair strength on aged TE showed significantly less (p < 0.05) MTBS than for FS. FS repaired with the same kind of RBC and adhesive resin presented the highest cohesive failures (43 %). DC was higher for TE (71 %) than for FS (58 %) before ageing. Conclusion: On the aged RBCs, less favourable repair strength could be expected especially for nanohybrid composite. For repair actions, RBC surface conditioning could be accomplished with either adhesive resin application only or with CoJet system, providing that the latter resulted in less pre-test failures. Clinical relevance: Clinicians could condition the resin surface prior to repair or relayering with either CoJet system or adhesive resin application only, depending on the availability of the system. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)