943 resultados para framework-intensive applications


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adaptation is an important requirement for mobile applications due to the varying levels of resource availability that characterizes mobile environments. However without proper control, multiple applications can each adapt independently in response to a range of different adaptive stimuli, causing conflicts or sub optimal performance. In this thesis we presented a framework, which enables multiple adaptation mechanisms to coexist on one platform. The key component of this framework was the 'Policy Server', which has all the system policies and governs the rules for adaptation. We also simulated our framework and subjected it to various adaptation scenarios to demonstrate the working of the system as a whole. With the help of the simulation it was shown that our framework enables seamless adaptation of multiple applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Access control (AC) is a necessary defense against a large variety of security attacks on the resources of distributed enterprise applications. However, to be effective, AC in some application domains has to be fine-grain, support the use of application-specific factors in authorization decisions, as well as consistently and reliably enforce organization-wide authorization policies across enterprise applications. Because the existing middleware technologies do not provide a complete solution, application developers resort to embedding AC functionality in application systems. This coupling of AC functionality with application logic causes significant problems including tremendously difficult, costly and error prone development, integration, and overall ownership of application software. The way AC for application systems is engineered needs to be changed. In this dissertation, we propose an architectural approach for engineering AC mechanisms to address the above problems. First, we develop a framework for implementing the role-based access control (RBAC) model using AC mechanisms provided by CORBA Security. For those application domains where the granularity of CORBA controls and the expressiveness of RBAC model suffice, our framework addresses the stated problem. In the second and main part of our approach, we propose an architecture for an authorization service, RAD, to address the problem of controlling access to distributed application resources, when the granularity and support for complex policies by middleware AC mechanisms are inadequate. Applying this architecture, we developed a CORBA-based application authorization service (CAAS). Using CAAS, we studied the main properties of the architecture and showed how they can be substantiated by employing CORBA and Java technologies. Our approach enables a wide-ranging solution for controlling the resources of distributed enterprise applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: British Columbia’s Fraser Health Authority (FHA) neonatal intensive care units (NICUs) value family centered care (FCC). Nevertheless, there is limited evidence that FCC is actually incorporated into practice, as well as some concern that FHA NICU education is inaccessible, inconsistent, or disorganized. Purpose: The mission of this project is to support the principles of FCC throughout the development of an FHA online NICU family education guide by reflecting upon the needs of families throughout their NICU journey. Methods: A needs assessment was initially completed and included literature reviews, consultations, and an environmental scan. This data informed development of an online NICU family education guide which plots current education materials along key stages of the NICU journey: prenatal, admission, early days, growing and developing, discharge and at home. For the purposes of this practicum, only the prenatal stage was fully developed and will serve as a template for other stages following a formative evaluation. A pamphlet and revised FHA Neonatal Checkpoint will also be developed to augment teaching by health care professionals. Implementation and evaluation plans were adapted from the Center for Disease Control Framework for Program Evaluation in Public Health. Results: The needs assessment validates and directs the development, implementation, and evaluation of the online guide illustrating an FCC approach. The online guide centralizes and organizes education by selecting education topics that relate to each stage of the NICU journey. This family-directed design enables families’ access to consistent and reliable information and offers them an opportunity to learn at their own pace. Conclusion: The process of creating, implementing, and evaluating an online family education program for FHA NICUs elucidates the intricacies and the advantages of integrating FCC into NICU practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The way we've always envisioned computer programs is slowly changing. Thanks to the recent development of wearable technologies we're experiencing the birth of new applications that are no more limited to a fixed screen, but are instead sparse in our surroundings by means of fully fledged computational objects. In this paper we discuss proper techniques and technologies to be used for the creation of "Augmented Worlds", through the design and development of a novel framework that can help us understand how to build these new programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many modern applications fall into the category of "large-scale" statistical problems, in which both the number of observations n and the number of features or parameters p may be large. Many existing methods focus on point estimation, despite the continued relevance of uncertainty quantification in the sciences, where the number of parameters to estimate often exceeds the sample size, despite huge increases in the value of n typically seen in many fields. Thus, the tendency in some areas of industry to dispense with traditional statistical analysis on the basis that "n=all" is of little relevance outside of certain narrow applications. The main result of the Big Data revolution in most fields has instead been to make computation much harder without reducing the importance of uncertainty quantification. Bayesian methods excel at uncertainty quantification, but often scale poorly relative to alternatives. This conflict between the statistical advantages of Bayesian procedures and their substantial computational disadvantages is perhaps the greatest challenge facing modern Bayesian statistics, and is the primary motivation for the work presented here.

Two general strategies for scaling Bayesian inference are considered. The first is the development of methods that lend themselves to faster computation, and the second is design and characterization of computational algorithms that scale better in n or p. In the first instance, the focus is on joint inference outside of the standard problem of multivariate continuous data that has been a major focus of previous theoretical work in this area. In the second area, we pursue strategies for improving the speed of Markov chain Monte Carlo algorithms, and characterizing their performance in large-scale settings. Throughout, the focus is on rigorous theoretical evaluation combined with empirical demonstrations of performance and concordance with the theory.

One topic we consider is modeling the joint distribution of multivariate categorical data, often summarized in a contingency table. Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. In Chapter 2, we derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions.

Latent class models for the joint distribution of multivariate categorical, such as the PARAFAC decomposition, data play an important role in the analysis of population structure. In this context, the number of latent classes is interpreted as the number of genetically distinct subpopulations of an organism, an important factor in the analysis of evolutionary processes and conservation status. Existing methods focus on point estimates of the number of subpopulations, and lack robust uncertainty quantification. Moreover, whether the number of latent classes in these models is even an identified parameter is an open question. In Chapter 3, we show that when the model is properly specified, the correct number of subpopulations can be recovered almost surely. We then propose an alternative method for estimating the number of latent subpopulations that provides good quantification of uncertainty, and provide a simple procedure for verifying that the proposed method is consistent for the number of subpopulations. The performance of the model in estimating the number of subpopulations and other common population structure inference problems is assessed in simulations and a real data application.

In contingency table analysis, sparse data is frequently encountered for even modest numbers of variables, resulting in non-existence of maximum likelihood estimates. A common solution is to obtain regularized estimates of the parameters of a log-linear model. Bayesian methods provide a coherent approach to regularization, but are often computationally intensive. Conjugate priors ease computational demands, but the conjugate Diaconis--Ylvisaker priors for the parameters of log-linear models do not give rise to closed form credible regions, complicating posterior inference. In Chapter 4 we derive the optimal Gaussian approximation to the posterior for log-linear models with Diaconis--Ylvisaker priors, and provide convergence rate and finite-sample bounds for the Kullback-Leibler divergence between the exact posterior and the optimal Gaussian approximation. We demonstrate empirically in simulations and a real data application that the approximation is highly accurate, even in relatively small samples. The proposed approximation provides a computationally scalable and principled approach to regularized estimation and approximate Bayesian inference for log-linear models.

Another challenging and somewhat non-standard joint modeling problem is inference on tail dependence in stochastic processes. In applications where extreme dependence is of interest, data are almost always time-indexed. Existing methods for inference and modeling in this setting often cluster extreme events or choose window sizes with the goal of preserving temporal information. In Chapter 5, we propose an alternative paradigm for inference on tail dependence in stochastic processes with arbitrary temporal dependence structure in the extremes, based on the idea that the information on strength of tail dependence and the temporal structure in this dependence are both encoded in waiting times between exceedances of high thresholds. We construct a class of time-indexed stochastic processes with tail dependence obtained by endowing the support points in de Haan's spectral representation of max-stable processes with velocities and lifetimes. We extend Smith's model to these max-stable velocity processes and obtain the distribution of waiting times between extreme events at multiple locations. Motivated by this result, a new definition of tail dependence is proposed that is a function of the distribution of waiting times between threshold exceedances, and an inferential framework is constructed for estimating the strength of extremal dependence and quantifying uncertainty in this paradigm. The method is applied to climatological, financial, and electrophysiology data.

The remainder of this thesis focuses on posterior computation by Markov chain Monte Carlo. The Markov Chain Monte Carlo method is the dominant paradigm for posterior computation in Bayesian analysis. It has long been common to control computation time by making approximations to the Markov transition kernel. Comparatively little attention has been paid to convergence and estimation error in these approximating Markov Chains. In Chapter 6, we propose a framework for assessing when to use approximations in MCMC algorithms, and how much error in the transition kernel should be tolerated to obtain optimal estimation performance with respect to a specified loss function and computational budget. The results require only ergodicity of the exact kernel and control of the kernel approximation accuracy. The theoretical framework is applied to approximations based on random subsets of data, low-rank approximations of Gaussian processes, and a novel approximating Markov chain for discrete mixture models.

Data augmentation Gibbs samplers are arguably the most popular class of algorithm for approximately sampling from the posterior distribution for the parameters of generalized linear models. The truncated Normal and Polya-Gamma data augmentation samplers are standard examples for probit and logit links, respectively. Motivated by an important problem in quantitative advertising, in Chapter 7 we consider the application of these algorithms to modeling rare events. We show that when the sample size is large but the observed number of successes is small, these data augmentation samplers mix very slowly, with a spectral gap that converges to zero at a rate at least proportional to the reciprocal of the square root of the sample size up to a log factor. In simulation studies, moderate sample sizes result in high autocorrelations and small effective sample sizes. Similar empirical results are observed for related data augmentation samplers for multinomial logit and probit models. When applied to a real quantitative advertising dataset, the data augmentation samplers mix very poorly. Conversely, Hamiltonian Monte Carlo and a type of independence chain Metropolis algorithm show good mixing on the same dataset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloud computing offers massive scalability and elasticity required by many scien-tific and commercial applications. Combining the computational and data handling capabilities of clouds with parallel processing also has the potential to tackle Big Data problems efficiently. Science gateway frameworks and workflow systems enable application developers to implement complex applications and make these available for end-users via simple graphical user interfaces. The integration of such frameworks with Big Data processing tools on the cloud opens new oppor-tunities for application developers. This paper investigates how workflow sys-tems and science gateways can be extended with Big Data processing capabilities. A generic approach based on infrastructure aware workflows is suggested and a proof of concept is implemented based on the WS-PGRADE/gUSE science gateway framework and its integration with the Hadoop parallel data processing solution based on the MapReduce paradigm in the cloud. The provided analysis demonstrates that the methods described to integrate Big Data processing with workflows and science gateways work well in different cloud infrastructures and application scenarios, and can be used to create massively parallel applications for scientific analysis of Big Data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advances in low power micro-processors, wireless networks and embedded systems have raised the need to utilize the significant resources of mobile devices. These devices for example, smart phones, tablets, laptops, wearables, and sensors are gaining enormous processing power, storage capacity and wireless bandwidth. In addition, the advancement in wireless mobile technology has created a new communication paradigm via which a wireless network can be created without any priori infrastructure called mobile ad hoc network (MANET). While progress is being made towards improving the efficiencies of mobile devices and reliability of wireless mobile networks, the mobile technology is continuously facing the challenges of un-predictable disconnections, dynamic mobility and the heterogeneity of routing protocols. Hence, the traditional wired, wireless routing protocols are not suitable for MANET due to its unique dynamic ad hoc nature. Due to the reason, the research community has developed and is busy developing protocols for routing in MANET to cope with the challenges of MANET. However, there are no single generic ad hoc routing protocols available so far, which can address all the basic challenges of MANET as mentioned before. Thus this diverse range of ever growing routing protocols has created barriers for mobile nodes of different MANET taxonomies to intercommunicate and hence wasting a huge amount of valuable resources. To provide interaction between heterogeneous MANETs, the routing protocols require conversion of packets, meta-model and their behavioural capabilities. Here, the fundamental challenge is to understand the packet level message format, meta-model and behaviour of different routing protocols, which are significantly different for different MANET Taxonomies. To overcome the above mentioned issues, this thesis proposes an Interoperable Framework for heterogeneous MANETs called IF-MANET. The framework hides the complexities of heterogeneous routing protocols and provides a homogeneous layer for seamless communication between these routing protocols. The framework creates a unique Ontology for MANET routing protocols and a Message Translator to semantically compare the packets and generates the missing fields using the rules defined in the Ontology. Hence, the translation between an existing as well as newly arriving routing protocols will be achieved dynamically and on-the-fly. To discover a route for the delivery of packets across heterogeneous MANET taxonomies, the IF-MANET creates a special Gateway node to provide cluster based inter-domain routing. The IF-MANET framework can be used to develop different middleware applications. For example: Mobile grid computing that could potentially utilise huge amounts of aggregated data collected from heterogeneous mobile devices. Disaster & crises management applications can be created to provide on-the-fly infrastructure-less emergency communication across organisations by utilising different MANET taxonomies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several studies in the past have revealed that network end user devices are left powered up 24/7 even when idle just for the sake of maintaining Internet connectivity. Network devices normally support low power states but are kept inactive due to their inability to maintain network connectivity. The Network Connectivity Proxy (NCP) has recently been proposed as an effective mechanism to impersonate network connectivity on behalf of high power devices and enable them to sleep when idle without losing network presence. The NCP can efficiently proxy basic networking protocol, however, proxying of Internet based applications have no absolute solution due to dynamic and non-predictable nature of the packets they are sending and receiving periodically. This paper proposes an approach for proxying Internet based applications and presents the basic software architectures and capabilities. Further, this paper also practically evaluates the proposed framework and analyzes expected energy savings achievable under-different realistic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Field-programmable gate arrays are ideal hosts to custom accelerators for signal, image, and data processing but de- mand manual register transfer level design if high performance and low cost are desired. High-level synthesis reduces this design burden but requires manual design of complex on-chip and off-chip memory architectures, a major limitation in applications such as video processing. This paper presents an approach to resolve this shortcoming. A constructive process is described that can derive such accelerators, including on- and off-chip memory storage from a C description such that a user-defined throughput constraint is met. By employing a novel statement-oriented approach, dataflow intermediate models are derived and used to support simple ap- proaches for on-/off-chip buffer partitioning, derivation of custom on-chip memory hierarchies and architecture transformation to ensure user-defined throughput constraints are met with minimum cost. When applied to accelerators for full search motion estima- tion, matrix multiplication, Sobel edge detection, and fast Fourier transform, it is shown how real-time performance up to an order of magnitude in advance of existing commercial HLS tools is enabled whilst including all requisite memory infrastructure. Further, op- timizations are presented that reduce the on-chip buffer capacity and physical resource cost by up to 96% and 75%, respectively, whilst maintaining real-time performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) differ from conventional distributed systems in many aspects. The resource limitation of sensor nodes, the ad-hoc communication and topology of the network, coupled with an unpredictable deployment environment are difficult non-functional constraints that must be carefully taken into account when developing software systems for a WSN. Thus, more research needs to be done on designing, implementing and maintaining software for WSNs. This thesis aims to contribute to research being done in this area by presenting an approach to WSN application development that will improve the reusability, flexibility, and maintainability of the software. Firstly, we present a programming model and software architecture aimed at describing WSN applications, independently of the underlying operating system and hardware. The proposed architecture is described and realized using the Model-Driven Architecture (MDA) standard in order to achieve satisfactory levels of encapsulation and abstraction when programming sensor nodes. Besides, we study different non-functional constrains of WSN application and propose two approaches to optimize the application to satisfy these constrains. A real prototype framework was built to demonstrate the developed solutions in the thesis. The framework implemented the programming model and the multi-layered software architecture as components. A graphical interface, code generation components and supporting tools were also included to help developers design, implement, optimize, and test the WSN software. Finally, we evaluate and critically assess the proposed concepts. Two case studies are provided to support the evaluation. The first case study, a framework evaluation, is designed to assess the ease at which novice and intermediate users can develop correct and power efficient WSN applications, the portability level achieved by developing applications at a high-level of abstraction, and the estimated overhead due to usage of the framework in terms of the footprint and executable code size of the application. In the second case study, we discuss the design, implementation and optimization of a real-world application named TempSense, where a sensor network is used to monitor the temperature within an area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-page applications have historically been subject to strong market forces driving fast development and deployment in lieu of quality control and changeable code, which are important factors for maintainability. In this report we develop two functionally equivalent applications using AngularJS and React and compare their maintainability as defined by ISO/IEC 9126. AngularJS and React represent two distinct approaches to web development, with AngularJS being a general framework providing rich base functionality and React a small specialized library for efficient view rendering. The quality comparison was accomplished by calculating Maintainability Index for each application. Version control analysis was used to determine quality indicators during development and subsequent maintenance where new functionality was added in two steps. The results show no major differences in maintainability in the initial applications. As more functionality is added the Maintainability Index decreases faster in the AngularJS application, indicating a steeper increase in complexity compared to the React application. Source code analysis reveals that changes in data flow requires significantly larger modifications of the AngularJS application due to its inherent architecture for data flow. We conclude that frameworks are useful when they facilitate development of known requirements but less so when applications and systems grow in size. Sammanfattning: Ensidesapplikationer har historiskt sett påverkats av starka marknadskrafter som pådriver snabba utvecklingscykler och leveranser. Detta medför att kvalitetskontroll och förändringsbar kod, som är viktiga faktorer för förvaltningsbarhet, blir lidande. I denna rapport utvecklar vi två funktionellt ekvi-valenta ensidesapplikationer med AngularJS och React samt jämför dessa applikationers förvaltningsbarhet enligt ISO/IEC 9126. AngularJS och React representerar två distinkta angreppsätt på webbutveckling, där AngularJS är ett ramverk med mycket färdig funktionalitet och React ett mindre bibliotek specialiserat på vyrendering. Kvalitetsjämförelsen utfördes genom att beräkna förvaltningsbarhetsindex för respektive applikation. Versionshanteringsanalys användes för att bestämma andra kvalitetsindikatorer efter den initiala utvecklingen samt två efterföljande underhållsarbeten. Resultaten visar inga markanta skillnader i förvaltningsbarhet för de initiala applikationerna. I takt med att mer funktionalitet lades till sjönk förvaltnings-barhetsindex snabbare för AngularJS-applikationen, vilket motsvarar en kraftigare ökning i komplexitet jämfört med React-applikationen. Versionshanteringsanalys visar att ändringar i dataflödet kräver större modifikationer för AngularJS-applikationen på grund av dess förbestämda arkitektur. Utifrån detta drar vi slutsatsen att ramverk är användbara när de understödjer utvecklingen mot kända krav men att deras nytta blir begränsad ju mer en applikation växer i storlek.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Meeting, socializing and conversing online with a group of people using teleconferencing systems is still quite different from the experience of meeting face to face. We are abruptly aware that we are online and that the people we are engaging with are not in close proximity. Analogous to how talking on the telephone does not replicate the experience of talking in person. Several causes for these differences have been identified and we propose inspiring and innovative solutions to these hurdles in attempt to provide a more realistic, believable and engaging online conversational experience. We present the distributed and scalable framework REVERIE that provides a balanced mix of these solutions. Applications build on top of the REVERIE framework will be able to provide interactive, immersive, photo-realistic experiences to a multitude of users that for them will feel much more similar to having face to face meetings than the experience offered by conventional teleconferencing systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A lightweight Java application suite has been developed and deployed allowing collaborative learning between students and tutors at remote locations. Students can engage in group activities online and also collaborate with tutors. A generic Java framework has been developed and applied to electronics, computing and mathematics education. The applications are respectively: (a) a digital circuit simulator, which allows students to collaborate in building simple or complex electronic circuits; (b) a Java programming environment where the paradigm is behavioural-based robotics, and (c) a differential equation solver useful in modelling of any complex and nonlinear dynamic system. Each student sees a common shared window on which may be added text or graphical objects and which can then be shared online. A built-in chat room supports collaborative dialogue. Students can work either in collaborative groups or else in teams as directed by the tutor. This paper summarises the technical architecture of the system as well as the pedagogical implications of the suite. A report of student evaluation is also presented distilled from use over a period of twelve months. We intend this suite to facilitate learning between groups at one or many institutions and to facilitate international collaboration. We also intend to use the suite as a tool to research the establishment and behaviour of collaborative learning groups. We shall make our software freely available to interested researchers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Individuals and corporate users are persistently considering cloud adoption due to its significant benefits compared to traditional computing environments. The data and applications in the cloud are stored in an environment that is separated, managed and maintained externally to the organisation. Therefore, it is essential for cloud providers to demonstrate and implement adequate security practices to protect the data and processes put under their stewardship. Security transparency in the cloud is likely to become the core theme that underpins the systematic disclosure of security designs and practices that enhance customer confidence in using cloud service and deployment models. In this paper, we present a framework that enables a detailed analysis of security transparency for cloud based systems. In particular, we consider security transparency from three different levels of abstraction, i.e., conceptual, organisation and technical levels, and identify the relevant concepts within these levels. This allows us to provide an elaboration of the essential concepts at the core of transparency and analyse the means for implementing them from a technical perspective. Finally, an example from a real world migration context is given to provide a solid discussion on the applicability of the proposed framework.