888 resultados para electromechanical impedance
Resumo:
Objective: Fat-free mass (FFM) reduction and the tendency for a reduction in surrounding fatty issue and increase in the middle are a natural consequence of growing old and should be studied in order to gain a better understanding of the aging process. This study set out to find the FFM differences between active elderly women in two age groups (60-69 and 70-80 years) and to determine which of the anthropometric measurements, body weight (BW), abdominal circumference (AC), or body mass index (BMI) are the best predictors of FFM variation within the group. Methods: Eighty-one (n = 81) active elderly women of the Third Age willingly signed up to participate in the research during the activities at the University of the Third Age (UTA) in Brazil. The research was approved by the Research Ethics Committee of the Faculty of Medical Sciences of the State University of Campinas (UNICAMP). Body weight (BW), height (H) and the BMI were measured according to the international standards. The AC was measured in centimetres at the H of the navel and body composition was ascertained using bioimpedance analysis. The SAS program was used to perform the statistical analysis of independent samples and parametric data. Results: The results showed FFM values with significant differences between the two groups, with the lowest values occurring among the women who were over 70 years of age. In the analysis, the Pearson`s Correlation Coefficient for each measured independent variable was ascertained, with the BW measurement showing the highest ratio (0.900). Conclusions: The BW measurement was regarded as reliable, low-cost and easy to use for monitoring FFM in elderly women who engage in physical activities. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The investigation of the factors that interfere in the well-being of the elderly and their QoL can provide theoretical and methodological subsidies in structuring actions and policies in the health area, in order to fulfill the needs of that population. In this descriptive transversal study, body composition and QoL of elderly women at the UTA program in Piracicaba (Sao Paulo, Brazil) were verified. The participants were 81 women from UTA, and the general levels of physical activity were evaluated, as well as body weight (BW), height, and bodymass index (BMI). The waist circumference (WC) was measured at the level of the umbilical scar and the body composition by impedance (BIA 310e). QoL was verified by means of WHOQOL-Bref and statistical analysis developed with the SAS program. The decrease of weight, height, BMI, and fat-free mass (FFM) was observed among the several age groups, although with no significant difference. The average levels of the general QoL scores and physical, psychological and environmental domains decreased in higher age groups, but social domains showed the opposite result. This fact can be a particular characteristic of the UTA group, and factors the influence such behavior are yet to be studied. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Monoclonal antibodies (MAb) have been commonly applied to measure LDL in vivo and to characterize modifications of the lipids and apoprotein of the LDL particles. The electronegative low density lipoprotein (LDL(-)) has an apolipoprotein B-100 modified at oxidized events in vivo. In this work, a novel LDL-electrochemical biosensor was developed by adsorption of anti-LDL(-) MAb on an (polyvinyl formal)-gold nanoparticles (PVF-AuNPs)-modified gold electrode. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to characterize the recognition of LDL-. The interaction between MAb-LDL(-) leads to a blockage in the electron transfer of the [Fe(CN)(6)](4-)/K(4)[Fe(CN)(6)](3-) redox couple, which may could result in high change in the electron transfer resistance (R(CT)) and decrease in the amperometric responses in CV analysis. The compact antibody-antigen complex introduces the insulating layer on the assembled surface, which increases the diameter of the semicircle, resulting in a high R(CT), and the charge transferring rate constant k(0) decreases from 18.2 x 10(-6) m/s to 4.6 x 10(-6) m/s. Our results suggest that the interaction between MAb and lipoprotein can be quantitatively assessed by the modified electrode. The PVF-AuNPs-MAb system exhibited a sensitive response to LDL(-), which could be used as a biosensor to quantify plasmatic levels of LDL(-). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The electrochemical behaviour of magnesium was studied in representative chloride and sulphate solutions including NaCl, Na2SO4, NaOH and their mixed solutions, HCl, and H2SO4: (1) by measuring electrochemical polarisation curves, (2) by using electrochemical impedance spectroscopy (EIS), and (3) by simultaneous measurement of hydrogen gas evolution and measurement of magnesium dissolution rates using inductively coupled plasma atomic emission spectrophotometry (ICPEAS). These experiments showed that a partially protective surface film played an important role in the dissolution of magnesium in chloride and sulphate solutions. Furthermore, the experimental data were consistent with the involvement of the intermediate species Mg+ in magnesium dissolution at film imperfections or on a film-free surface. At such sites, magnesium first oxidised electrochemically to the intermediate species Mg+, and then the intermediate species chemically reacted with water to produce hydrogen and Mg2+. The presence of Cl- ions increased the film free area, and accelerated the electrochemical reaction rate from magnesium metal to Mg+. (C) 1997 Elsevier Science Ltd.
Resumo:
Bioelectrical impedance analysis (BIA) offers the potential for a simple, portable and relatively inexpensive technique for the in vivo measurement of total body water (TBW). The potential of BIA as a technique of body composition analysis is even greater when one considers that body water can be used as a surrogate measure of lean body mass. However, BIA has not found universal acceptance even with the introduction of multi-frequency BIA (MFBIA) which, potentially, may improve the predictive accuracy of the measurement. There are a number of reasons for this lack of acceptance, although perhaps the major reason is that no single algorithm has been developed which can be applied to all subject groups. This may be due, in part, to the commonly used wrist-to-ankle protocol which is not indicated by the basic theory of bioimpedance, where the body is considered as five interconnecting cylinders. Several workers have suggested the use of segmental BIA measurements to provide a protocol more in keeping with basic theory. However, there are other difficulties associated with the application of BIA, such as effects of hydration and ion status, posture and fluid distribution. A further putative advantage of MFBIA is the independent assessment not only of TBW but also of the extracellular fluid volume (ECW), hence heralding the possibility of,being able to assess the fluid distribution between these compartments. Results of studies in this area have been, to date, mixed. Whereas strong relationships of impedance values at low frequencies with ECW, and at high frequencies with TBW, have been reported, changes in impedance are not always well correlated with changes in the size of the fluid compartments (assessed by alternative and more direct means) in pathological conditions. Furthermore, the theoretical advantages of Cole-Cole modelling over selected frequency prediction have not always been apparent. This review will consider the principles, methodology and applications of BIA. The principles and methodology will,be considered in relation to the basic theory of BIA and difficulties experienced in its application. The relative merits of single and multiple frequency BIA will be addressed, with particular attention to the latter's role in the assessment of compartmental fluid volumes. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The effect of skin temperature and hydration status has been suggested by some researchers as a common cause of variation in bioimpedance measurements of the body. This paper details a simple method of measuring the transverse impedance of the skin. The measured resistance and reactance was found to decrease by 35% and 18% for an increase of 20 degrees C. Similarly a decrease in resistance and reactance of 20% and 25% respectively was detected after hydration of the skin. However, the changes in skin temperature and hydration were found to have no significant effect on the whole body bioimpedance measurements using the standard tetra-polar electrode technique. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The common approach of bioelectrical impedance analysis to estimate body water uses a wrist-to-ankle methodology which, although not indicated by theory, has the advantage of ease of application particularly for clinical studies involving patients with debilitating diseases. A number of authors have suggested the use of a segmental protocol in which the impedances of the trunk and limbs are measured separately to provide a methodology more in keeping with basic theory. The segmental protocol hits not, however, been generally adopted, partly because of the increased complexity involved in its application, and partly because studies comparing the two methodologies have not clearly demonstrated a significant improvement from the segmental methodology. We have conducted a small pilot study involving ten subjects to investigate the efficacy of the two methodologies in a group of normal subjects. The study did not require the independent measure of body water, by for example isotope dilution, as the subjects were maintained in a state of constant hydration with only the distribution between limbs and trunk changing as a result of change in posture. The results demonstrate a significant difference between the two methodologies in predicting the expected constancy of body water in this study, with the segmental methodology indicating a mean percentage change in extracellular water of -2.2%; which was not significantly different from the expected null result, whereas the wrist-to-ankle methodology indicated a mean percentage change in extracellular water of -6.6%. This is significantly different from the null result, and from the value obtained from the segmental methodology (p = 0.006). Similar results were obtained using estimates of total body water from the two methodologies. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The corrosion behaviour of AZ21, AZ501 and AZ91 was studied in 1 N NaCl at pH 11 by measuring electrochemical polarization curves, electrochemical AC impedance spectroscopy (EIS) and simultaneously measuring the hydrogen evolution rate and the: magnesium dissolution rate. The corrosion rates increased in the following order: AZ501 < AZ21 < AZ91. The: corrosion behaviour was related to alloy microstructure as revealed by optical and electron microscopy. The beta phase was very stable in the test solution and was an effective cathode. The beta phase served two roles, as a barrier and as a galvanic cathode. If the beta phase is present in the alpha matrix as intergranular precipitates with a small volume fraction, then the beta phase mainly serves as a galvanic cathode, and accelerates the corrosion of the alpha matrix. If the beta Fraction is high, then the beta phase may mainly act as an anodic barrier to inhibit the overall corrosion of the alloy. The composition and compositional distribution in the alpha phase is also crucial to the overall corrosion performance of dual phase alloys. Increasing the aluminum concentration in the alpha phase increases the anodic dissolution rate and also increases the cathodic hydrogen evolution rate. Increasing the zinc concentration in the alpha phase may have the opposite effect. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
New techniques in air-displacement plethysmography seem to have overcome many of the previous problems of poor reproducibility and validity. These have made body-density measurements available to a larger range of individuals, including children, elderly and sick patients who often have difficulties in being submerged underwater in hydrodensitometry systems. The BOD POD air-displacement system (BOD POD body composition system; Life Measurement Instruments, Concord, CA, USA) is more precise than hydrodensitometry, is simple and rapid to operate (approximately 1 min measurements) and the results agree closely with those of hydrodensitometry (e.g. +/-3.4% for estimation of body fat). Body line scanners employing the principles of three-dimensional photography are potentially able to measure the surface area and volume of the body and its segments even more rapidly (approximately 10 s), but the validity of the measurements needs to be established. Advances in i.r. spectroscopy and mathematical modelling for calculating the area under the curve have improved precision for measuring enrichment of (H2O)-H-2 in studies of water dilution (CV 0.1-0.9% within the range of 400-1000 mu l/l) in saliva, plasma and urine. The technique is rapid and compares closely with mass spectrometry (bias 1 (SD 2) %). Advances in bedside bioelectrical-impedance techniques are making possible potential measurements of skinfold thicknesses and limb muscle mass electronically. Preliminary results suggest that the electronic method is more reproducible (intra-and inter-individual reproducibility for measuring skinfold thicknesses) and associated with less bias (+ 12%), than anthropometry (+ 40%). In addition to these selected examples, the 'mobility' or transfer of reference methods between centres has made the distinction between reference and bedside or field techniques less distinct than in the past.
Resumo:
Bioelectrical impedance analysis (BIA) has been reported to be insensitive to changes in water volumes in individual subjects, This study was designed to investigate the effect on the intra- and extracellular resistances (Ri and Re) of the segments of subjects for whom body water was changed without significant change to the total amount of electrolyte in the respective fluids, Twelve healthy adult subjects were recruited. Ri and Re of the leg, trunk, and arm of the subjects were determined from BIA measures prior to commencement of two separate studies that involved intervention, resulting in a loss/gain of body water effected either bt a sauna followed by water intake (study 1) or by ingestion (study 2). Ri and Re of the segments were also determined at a number of times following these interventions, The mean change in body water, expressed as a percentage of body weight, was 0.9% in study 1 and 1.25% in study 2. For each study, the results for each subject were normalized for each limb to the initial (prestudy) value and then the normalized results for each segment were pooled for all subjects, ANOVA of these pooled results failed to demonstrate any significant differences between the normalized mean values of Ri or Re of the segments measured through the course of each study, The failure to detect a change in Ri or Re is explained in terms of the basic theory of BIA.
Resumo:
Recent advances in the application of bioelectrical impedance analysis (BIA) have indicated that a more accurate approach to the estimation of total body water is to consider the impedance of the various body segments rather than simply that of the whole body. The segmental approach necessitates defining and locating the physical demarcation between both the trunk and leg and the trunk and arm. Despite the use of anatomical markers, these points of demarcation are difficult to locate with precision between subjects. There are also technical problems associated with the regional dispersion of the current distribution from one segment (cylinder) to another of different cross-sectional area. The concept of equipotentials in line with the proximal aspects of the upper land lower) limbs along the contralateral limbs was investigated and, in particular, the utility of this concept in the measurement of segmental bioimpedance. The variation of measured segmental impedance using electrode sites along these equipotentials was less than 2.0% for all of the commonly used impedance parameters. This variation is approximately equal to that expected from biological variation over the measurement time. It is recommended that the electrode sites, for the measurement of segmental bioelectrical impedance in humans, described herein are adopted in accordance with the proposals of the NM Technology Assessment Conference Statement.
Resumo:
I noted with interest the article by Drs Perrin and Guex, entitled &dquo;Edema and leg volume: Methods of assessment,&dquo; published in Angiology 51:9-12, 2000. This was a timely and comprehensive review of the various methods in clinical use for the assessment of peripheral edema, notably in the leg. I would like to take this opportunity to alert readers to a further technique useful for this purpose, namely, bioelectrical impedance analysis. An early reportl described its use for the measurement of edema in the leg, but other than its successful use for the assessment of edema in the arm following masteCtoMy,2,1 the potential of the method remains to be fully realized. This is unfortunate since the method directly and quantifiably measures edema.
Resumo:
Lymphedema is an accumulation of lymph fluid in the limb resulting from an insufficiency of the lymphatic system. It is commonly associated with surgical or radiotherapy treatment for breast cancer. As with many progressively debilitating disorders, the effectiveness of treatment is significantly improved by earlier intervention. Multiple frequency bioelectrical impedance analysis (MFBIA) previously was shown to provide accurate relative measures of lymphedema in the upper limb in patients after treatment for breast cancer, This presentation reports progress to date on a three-year prospective study to evaluate the efficacy of MFBIA to predict the early onset of lymphedema in breast cancer patients following treatment. Bioelectrical impedance measurements of each upper limb were recorded in a group of healthy control subjects (n = 50) to determine the ratio of extracellular limb-fluid volumes. From this population, the expected normal range of asymmetry (99.7% confidence) between the limbs was determined, Patients undergoing surgery to treat breast cancer were recruited into the study, and MFBIA measurements were recorded presurgery, at one month and three months after surgery, and then at two-month intervals for up to 24 months postsurgery, When patients had an MFBIA measure outside the 99.7% range of the control group, they were referred to their physician for clinical assessment. Results to date: Over 100 patients were recruited into the study over the past two years; at present, 19 have developed lymphedema and, of these, 12 are receiving treatment. In each of these 19 cases, MFBIA predicted the onset of the condition up to four months before it could be clinically diagnosed. The false-negative rate currently is zero, The study will continue to monitor patients over the remaining year to accurately ascertain estimates of specificity and sensitivity of the procedure.
Resumo:
We are currently in the midst of a second quantum revolution. The first quantum revolution gave us new rules that govern physical reality. The second quantum revolution will take these rules and use them to develop new technologies. In this review we discuss the principles upon which quantum technology is based and the tools required to develop it. We discuss a number of examples of research programs that could deliver quantum technologies in coming decades including: quantum information technology, quantum electromechanical systems, coherent quantum electronics, quantum optics and coherent matter technology.