995 resultados para dense system
Resumo:
Item folksonomy or tag information is popularly available on the web now. However, since tags are arbitrary words given by users, they contain a lot of noise such as tag synonyms, semantic ambiguities and personal tags. Such noise brings difficulties to improve the accuracy of item recommendations. In this paper, we propose to combine item taxonomy and folksonomy to reduce the noise of tags and make personalized item recommendations. The experiments conducted on the dataset collected from Amazon.com demonstrated the effectiveness of the proposed approaches. The results suggested that the recommendation accuracy can be further improved if we consider the viewpoints and the vocabularies of both experts and users.
Resumo:
This paper presents an image based visual servoing system that is intended to be used for tracking and obtaining scientific observations of the HIFiRE vehicles. The primary aim of this tracking platform is to acquire and track the thermal signature emitted from the surface of the vehicle during the re-entry phase of the mission using an infra-red camera. The implemented visual servoing scheme uses a classical image based approach to identify and track the target using visual kinematic control. The paper utilizes simulation and experimental results to show the tracking performance of the system using visual feedback. Discussions on current implementation and control techniques to further improve the performance of the system are also explored.
Resumo:
This paper presents a novel two-stage information filtering model which combines the merits of term-based and pattern- based approaches to effectively filter sheer volume of information. In particular, the first filtering stage is supported by a novel rough analysis model which efficiently removes a large number of irrelevant documents, thereby addressing the overload problem. The second filtering stage is empowered by a semantically rich pattern taxonomy mining model which effectively fetches incoming documents according to the specific information needs of a user, thereby addressing the mismatch problem. The experiments have been conducted to compare the proposed two-stage filtering (T-SM) model with other possible "term-based + pattern-based" or "term-based + term-based" IF models. The results based on the RCV1 corpus show that the T-SM model significantly outperforms other types of "two-stage" IF models.
Resumo:
Engineering asset management (EAM) is a broad discipline and the EAM functions and processes are characterized by its distributed nature. However, engineering asset nowadays mostly relies on self-maintained experiential rule bases and periodic maintenance, which is lacking a collaborative engineering approach. This research proposes a collaborative environment integrated by a service center with domain expertise such as diagnosis, prognosis, and asset operations. The collaborative maintenance chain combines asset operation sites, service center (i.e., maintenance operation coordinator), system provider, first tier collaborators, and maintenance part suppliers. Meanwhile, to realize the automation of communication and negotiation among organizations, multiagent system (MAS) technique is applied to enhance the entire service level. During the MAS design processes, this research combines Prometheus MAS modeling approach with Petri-net modeling methodology and unified modeling language to visualize and rationalize the design processes of MAS. The major contributions of this research include developing a Petri-net enabled Prometheus MAS modeling methodology and constructing a collaborative agent-based maintenance chain framework for integrated EAM.
Resumo:
We present a novel method and instrument for in vivo imaging and measurement of the human corneal dynamics during an air puff. The instrument is based on high-speed swept source optical coherence tomography (ssOCT) combined with a custom adapted air puff chamber from a non-contact tonometer, which uses an air stream to deform the cornea in a non-invasive manner. During the short period of time that the deformation takes place, the ssOCT acquires multiple A-scans in time (M-scan) at the center of the air puff, allowing observation of the dynamics of the anterior and posterior corneal surfaces as well as the anterior lens surface. The dynamics of the measurement are driven by the biomechanical properties of the human eye as well as its intraocular pressure. Thus, the analysis of the M-scan may provide useful information about the biomechanical behavior of the anterior segment during the applanation caused by the air puff. An initial set of controlled clinical experiments are shown to comprehend the performance of the instrument and its potential applicability to further understand the eye biomechanics and intraocular pressure measurements. Limitations and possibilities of the new apparatus are discussed.
Resumo:
This paper reports on the development of a tool that generates randomised, non-multiple choice assessment within the BlackBoard Learning Management System interface. An accepted weakness of multiple-choice assessment is that it cannot elicit learning outcomes from upper levels of Biggs’ SOLO taxonomy. However, written assessment items require extensive resources for marking, and are susceptible to copying as well as marking inconsistencies for large classes. This project developed an assessment tool which is valid, reliable and sustainable and that addresses the issues identified above. The tool provides each student with an assignment assessing the same learning outcomes, but containing different questions, with responses in the form of words or numbers. Practice questions are available, enabling students to obtain feedback on their approach before submitting their assignment. Thus, the tool incorporates automatic marking (essential for large classes), randomised tasks to each student (reducing copying), the capacity to give credit for working (feedback on the application of theory), and the capacity to target higher order learning outcomes by requiring students to derive their answers rather than choosing them. Results and feedback from students are presented, along with technical implementation details.
Resumo:
Inspection of solder joints has been a critical process in the electronic manufacturing industry to reduce manufacturing cost, improve yield, and ensure product quality and reliability. This paper proposes two inspection modules for an automatic solder joint classification system. The “front-end” inspection system includes illumination normalisation, localisation and segmentation. The “back-end” inspection involves the classification of solder joints using the Log Gabor filter and classifier fusion. Five different levels of solder quality with respect to the amount of solder paste have been defined. The Log Gabor filter has been demonstrated to achieve high recognition rates and is resistant to misalignment. This proposed system does not need any special illumination system, and the images are acquired by an ordinary digital camera. This system could contribute to the development of automated non-contact, non-destructive and low cost solder joint quality inspection systems.