874 resultados para decision support systems, GIS, interpolation, multiple regression
Resumo:
Ponencia invitada sobre gestion de trafico aereo en el curso de verano de la UPM Research in Decision Support Systems for future Air Traffic Management
Consolidation of a wsn and minimax method to rapidly neutralise intruders in strategic installations
Resumo:
Due to the sensitive international situation caused by still-recent terrorist attacks, there is a common need to protect the safety of large spaces such as government buildings, airports and power stations. To address this problem, developments in several research fields, such as video and cognitive audio, decision support systems, human interface, computer architecture, communications networks and communications security, should be integrated with the goal of achieving advanced security systems capable of checking all of the specified requirements and spanning the gap that presently exists in the current market. This paper describes the implementation of a decision system for crisis management in infrastructural building security. Specifically, it describes the implementation of a decision system in the management of building intrusions. The positions of the unidentified persons are reported with the help of a Wireless Sensor Network (WSN). The goal is to achieve an intelligent system capable of making the best decision in real time in order to quickly neutralise one or more intruders who threaten strategic installations. It is assumed that the intruders’ behaviour is inferred through sequences of sensors’ activations and their fusion. This article presents a general approach to selecting the optimum operation from the available neutralisation strategies based on a Minimax algorithm. The distances among different scenario elements will be used to measure the risk of the scene, so a path planning technique will be integrated in order to attain a good performance. Different actions to be executed over the elements of the scene such as moving a guard, blocking a door or turning on an alarm will be used to neutralise the crisis. This set of actions executed to stop the crisis is known as the neutralisation strategy. Finally, the system has been tested in simulations of real situations, and the results have been evaluated according to the final state of the intruders. In 86.5% of the cases, the system achieved the capture of the intruders, and in 59.25% of the cases, they were intercepted before they reached their objective.
Resumo:
La diabetes mellitus es el conjunto de alteraciones provocadas por un defecto en la cantidad de insulina secretada o por un aprovechamiento deficiente de la misma. Es causa directa de complicaciones a corto, medio y largo plazo que disminuyen la calidad y las expectativas de vida de las personas con diabetes. La diabetes mellitus es en la actualidad uno de los problemas más importantes de salud. Ha triplicado su prevalencia en los últimos 20 anos y para el año 2025 se espera que existan casi 300 millones de personas con diabetes. Este aumento de la prevalencia junto con la morbi-mortalidad asociada a sus complicaciones micro y macro-vasculares convierten la diabetes en una carga para los sistemas sanitarios, sus recursos económicos y sus profesionales, haciendo de la enfermedad un problema individual y de salud pública de enormes proporciones. De momento no existe cura a esta enfermedad, de modo que el objetivo terapéutico del tratamiento de la diabetes se centra en la normalización de la glucemia intentando minimizar los eventos de hiper e hipoglucemia y evitando la aparición o al menos retrasando la evolución de las complicaciones vasculares, que constituyen la principal causa de morbi-mortalidad de las personas con diabetes. Un adecuado control diabetológico implica un tratamiento individualizado que considere multitud de factores para cada paciente (edad, actividad física, hábitos alimentarios, presencia de complicaciones asociadas o no a la diabetes, factores culturales, etc.). Sin embargo, a corto plazo, las dos variables más influyentes que el paciente ha de manejar para intervenir sobre su nivel glucémico son la insulina administrada y la dieta. Ambas presentan un retardo entre el momento de su aplicación y el comienzo de su acción, asociado a la absorción de los mismos. Por este motivo la capacidad de predecir la evolución del perfil glucémico en un futuro cercano, ayudara al paciente a tomar las decisiones adecuadas para mantener un buen control de su enfermedad y evitar situaciones de riesgo. Este es el objetivo de la predicción en diabetes: adelantar la evolución del perfil glucémico en un futuro cercano para ayudar al paciente a adaptar su estilo de vida y sus acciones correctoras, con el propósito de que sus niveles de glucemia se aproximen a los de una persona sana, evitando así los síntomas y complicaciones de un mal control. La aparición reciente de los sistemas de monitorización continua de glucosa ha proporcionado nuevas alternativas. La disponibilidad de un registro exhaustivo de las variaciones del perfil glucémico, con un periodo de muestreo de entre uno y cinco minutos, ha favorecido el planteamiento de nuevos modelos que tratan de predecir la glucemia utilizando tan solo las medidas anteriores de glucemia o al menos reduciendo significativamente la información de entrada a los algoritmos. El hecho de requerir menor intervención por parte del paciente, abre nuevas posibilidades de aplicación de los predictores de glucemia, haciéndose viable su uso en tiempo real, como sistemas de ayuda a la decisión, como detectores de situaciones de riesgo o integrados en algoritmos automáticos de control. En esta tesis doctoral se proponen diferentes algoritmos de predicción de glucemia para pacientes con diabetes, basados en la información registrada por un sistema de monitorización continua de glucosa así como incorporando la información de la insulina administrada y la ingesta de carbohidratos. Los algoritmos propuestos han sido evaluados en simulación y utilizando datos de pacientes registrados en diferentes estudios clínicos. Para ello se ha desarrollado una amplia metodología, que trata de caracterizar las prestaciones de los modelos de predicción desde todos los puntos de vista: precisión, retardo, ruido y capacidad de detección de situaciones de riesgo. Se han desarrollado las herramientas de simulación necesarias y se han analizado y preparado las bases de datos de pacientes. También se ha probado uno de los algoritmos propuestos para comprobar la validez de la predicción en tiempo real en un escenario clínico. Se han desarrollado las herramientas que han permitido llevar a cabo el protocolo experimental definido, en el que el paciente consulta la predicción bajo demanda y tiene el control sobre las variables metabólicas. Este experimento ha permitido valorar el impacto sobre el control glucémico del uso de la predicción de glucosa. ABSTRACT Diabetes mellitus is the set of alterations caused by a defect in the amount of secreted insulin or a suboptimal use of insulin. It causes complications in the short, medium and long term that affect the quality of life and reduce the life expectancy of people with diabetes. Diabetes mellitus is currently one of the most important health problems. Prevalence has tripled in the past 20 years and estimations point out that it will affect almost 300 million people by 2025. Due to this increased prevalence, as well as to morbidity and mortality associated with micro- and macrovascular complications, diabetes has become a burden on health systems, their financial resources and their professionals, thus making the disease a major individual and a public health problem. There is currently no cure for this disease, so that the therapeutic goal of diabetes treatment focuses on normalizing blood glucose events. The aim is to minimize hyper- and hypoglycemia and to avoid, or at least to delay, the appearance and development of vascular complications, which are the main cause of morbidity and mortality among people with diabetes. A suitable, individualized and controlled treatment for diabetes involves many factors that need to be considered for each patient: age, physical activity, eating habits, presence of complications related or unrelated to diabetes, cultural factors, etc. However, in the short term, the two most influential variables that the patient has available in order to manage his/her glycemic levels are administered insulin doses and diet. Both suffer from a delay between their time of application and the onset of the action associated with their absorption. Therefore, the ability to predict the evolution of the glycemic profile in the near future could help the patient to make appropriate decisions on how to maintain good control of his/her disease and to avoid risky situations. Hence, the main goal of glucose prediction in diabetes consists of advancing the evolution of glycemic profiles in the near future. This would assist the patient in adapting his/her lifestyle and in taking corrective actions in a way that blood glucose levels approach those of a healthy person, consequently avoiding the symptoms and complications of a poor glucose control. The recent emergence of continuous glucose monitoring systems has provided new alternatives in this field. The availability of continuous records of changes in glycemic profiles (with a sampling period of one or five minutes) has enabled the design of new models which seek to predict blood glucose by using automatically read glucose measurements only (or at least, reducing significantly the data input manually to the algorithms). By requiring less intervention by the patient, new possibilities are open for the application of glucose predictors, making its use feasible in real-time applications, such as: decision support systems, hypo- and hyperglycemia detectors, integration into automated control algorithms, etc. In this thesis, different glucose prediction algorithms are proposed for patients with diabetes. These are based on information recorded by a continuous glucose monitoring system and incorporate information of the administered insulin and carbohydrate intakes. The proposed algorithms have been evaluated in-silico and using patients’ data recorded in different clinical trials. A complete methodology has been developed to characterize the performance of predictive models from all points of view: accuracy, delay, noise and ability to detect hypo- and hyperglycemia. In addition, simulation tools and patient databases have been deployed. One of the proposed algorithms has additionally been evaluated in terms of real-time prediction performance in a clinical scenario in which the patient checked his/her glucose predictions on demand and he/she had control on his/her metabolic variables. This has allowed assessing the impact of using glucose prediction on glycemic control. The tools to carry out the defined experimental protocols were also developed in this thesis.
Resumo:
This paper presents the model named Accepting Networks of Evolutionary Processors as NP-problem solver inspired in the biological DNA operations. A processor has a rules set, splicing rules in this model,an object multiset and a filters set. Rules can be applied in parallel since there exists a large number of copies of objects in the multiset. Processors can form a graph in order to solve a given problem. This paper shows the network configuration in order to solve the SAT problem using linear resources and time. A rule representation arquitecture in distributed environments can be easily implemented using these networks of processors, such as decision support systems, as shown in the paper.
Resumo:
The implementation of Internet technologies has led to e-Manufacturing technologies becoming more widely used and to the development of tools for compiling, transforming and synchronising manufacturing data through the Web. In this context, a potential area for development is the extension of virtual manufacturing to performance measurement (PM) processes, a critical area for decision making and implementing improvement actions in manufacturing. This paper proposes a PM information framework to integrate decision support systems in e-Manufacturing. Specifically, the proposed framework offers a homogeneous PM information exchange model that can be applied through decision support in e-Manufacturing environment. Its application improves the necessary interoperability in decision-making data processing tasks. It comprises three sub-systems: a data model, a PM information platform and PM-Web services architecture. A practical example of data exchange for measurement processes in the area of equipment maintenance is shown to demonstrate the utility of the model.
Resumo:
Este Proyecto Fin de Grado, es el primer paso para abordar la construcción de una plataforma de conocimiento evolutivo para dos sistemas que facilitan la detección precoz de trastornos del lenguaje en niños de 0 a 6 años. Concretamente, el objetivo principal de este proyecto es el diseño, desarrollo y puesta en explotación de un sistema de recogida de propuestas de mejora sobre la base de conocimiento de los sistemas de ayuda a la toma de decisiones Gades y Pegaso. Este sistema está formado fundamentalmente por una aplicación diseñada y construida mediante una arquitectura de componentes de software modular y reutilizable. La aplicación será usada por los usuarios de las plataformas Pegaso y Gades para realizar las propuestas de cambio sobre la base de conocimiento de dichos sistemas. El sistema es accesible vía web y almacena toda la información que maneja en una base de datos. Asimismo, expone un estudio de aplicaciones orientadas al trabajo colaborativo (CSCW) y a la toma de decisiones colaborativa, como paso previo al desarrollo de una funcionalidad futura del propio sistema. ABSTRACT. This Final Degree Project, is the first step to address the construction of a platform for two evolutionary knowledge systems that facilitate early detection of language disorders in children aged 0-6 years. Specifically, the main objective of this project is the design, development and start-up of a system that collect improvement proposals about the knowledge of decision support systems Gades and Pegaso. This system consists mainly of an application designed and built by a modular component architecture and reusable software. The application will be used by users of the Pegaso and Gades platforms for change proposals on the basis of knowledge of such systems. The system is accessible via web and stores all the information managed in a database. It also presents a study of collaborative work oriented applications (CSCW) and collaborative decision making, prior to the development of a future system functionality.
Resumo:
Las Tecnologías de la Información y las Comunicaciones han propiciado avances en el contexto de la salud tanto en la gestión efectiva de información socio‐sanitaria de forma electrónica, como en la provisión de servicios de e‐salud y telemedicina. Los antecedentes de investigación publicados en esta área corroboran este hecho presentando las mejoras experimentadas en la atención de la población y en la provisión de servicios sanitarios. La atención temprana, cuyos principios científicos se fundamentan en los campos de la pediatría, neurología, psicología, psiquiatría, pedagogía, fisiatría y lingüística, entre otros, tiene como finalidad ofrecer a los niños con déficit o con riesgo de padecerlos un conjunto de acciones optimizadoras y compensadoras, que faciliten su adecuada maduración en todos los ámbitos y que les permita alcanzar el máximo nivel de desarrollo personal y de integración social. La detección de posibles alteraciones en el desarrollo infantil es un aspecto clave de la atención temprana en la medida en que puede posibilitar la puesta en marcha de diversos mecanismos de actuación disponibles en las entidades implicadas, valiosos para la calidad de vida de la persona. Cuanto antes se realice la detección, existen mayores garantías de prevenir patologías añadidas, lograr mejoras funcionales y posibilitar un ajuste más adaptativo entre el niño y su entorno. El objetivo de la investigación presentada en esta tesis doctoral es analizar, diseñar, verificar y validar un sistema de información abierto, basado en conocimiento, que facilite efectivamente a los profesionales que trabajan con la población infantil entre 0 y 6 años la detección precoz de posibles trastornos del lenguaje. Desde el punto de vista metodológico, la Ingeniería del Conocimiento ofrece un marco conceptual sólido que permite desarrollar y validar Sistemas de Ayuda a la Toma de Decisiones distribuidos y escalables, capaces de ayudar al pediatra de Atención Primaria y al educador infantil en la detección precoz de posibles trastornos del lenguaje en niños. La evaluación del sistema se ha realizado de forma incremental mediante el diseño y validación de pruebas de campo experimentales consistentes en la evaluación de niños en dos escenarios distintos: la escuela infantil y el centro de atención temprana. Los experimentos realizados en poblaciones distintas con alrededor de 344 niños durante 2 años, han permitido contrastar la buena adecuación del sistema propuesto a las necesidades de detección de los profesionales que trabajan con niños entre 0 y 6 años. La tesis resultante ha permitido caracterizar el uso del sistema en entornos reales, conocer la aceptación entre los usuarios y su impacto en la provisión de un servicio de atención temprana como el descrito para el correcto seguimiento del desarrollo del lenguaje en los niños, además de proponer un nuevo modelo de atención y evaluación cooperativa que permita incrementar el conocimiento experimental existente al respecto. ABSTRACT The Information and Communication Technology have led to advances in the context of health both in the effective management of socio‐health information electronically, and in the provision of e‐health and telemedicine. The history of research published in this area confirm this fact by presenting the improvements in the care of the population and the provision of health services. Early attention, whose scientific principles are based on the fields of pediatrics, neurology, psychology, psychiatry, pedagogy, physical medicine and linguistics, among others, aims to provide children with deficits or risk of suffering a set of enhancer actions, which facilitate adequate maturation in all areas and allow them to achieve the highest level of personal development and social integration. The detection of possible changes in child development is a key aspect of early intervention to the extent that it can enable the implementation of different mechanisms of action available to the entities involved, valuable to the quality of life of the person. The earlier the detection is made, there are more guarantees added to prevent diseases, achieving functional improvements and enable a more adaptive fit between the child and his environment. The aim of the research presented is to analyze, design, verify and validate an open information system, based on knowledge, which effectively provide professionals working with the child population between 0 and 6 years, in processes of early detection of language disorders. From the methodological point of view, Knowledge Engineering provides a solid conceptual framework to develop and validate a distributed and scalable decision support systems aim to assist pediatricians and language therapists at early identification and referral of language disorder in childhood. The system evaluation was performed incrementally with the design and validation of consistent experimental field tests in the assessment of children in two different scenarios: the nursery and early intervention center. Experiments in different populations with about 344 children over 2 years, allowed to testing the adequacy of the proposed good detection needs of professionals working with children between 0 and 6 years old system. The resulting thesis has allowed to formalizing the system at real environments and to identifying the acceptance by users as well as its impact on the provision of an early intervention service, such as the one described for the proper monitoring of language development in children. In addition, it proposes a new model of care and cooperative evaluation that lets to increase the existing experimental knowledge about it.
Resumo:
The study area is La Colacha sub-basins from Arroyos Menores basins, natural areas at West and South of Río Cuarto in Province of Córdoba of Argentina, fertile with loess soils and monsoon temperate climate, but with soil erosions including regressive gullies that degrade them progressively. Cultivated gently since some hundred sixty years, coordinated action planning became necessary to conserve lands while keeping good agro-production. The authors had improved data on soils and on hydrology for the study area, evaluated systems of soil uses and actions to be recommended and applied Decision Support Systems (DSS) tools for that, and were conducted to use discrete multi-criteria models (MCDM) for the more global views about soil conservation and hydraulic management actions and about main types of use of soils. For that they used weighted PROMETHEE, ELECTRE, and AHP methods with a system of criteria grouped as environmental, economic and social, and criteria from their data on effects of criteria. The alternatives resulting offer indication for planning depending somehow on sub basins and on selections of weights, but actions for conservation of soils and water management measures are recommended to conserve the basins conditions, actually sensibly degrading, mainly keeping actual uses of the lands.
Resumo:
Tradicionalmente, los sistemas de ayuda a la decisión (Decision Support Systems, DSS) han estado dirigidos a los profesionales médicos; sin embargo también pueden ayudar a aquellos pacientes que desean tener un papel más activo en el cuidado de su salud. Además, los pacientes quieren ser tratados en el momento en que su estado de salud lo requiera, sin importar el lugar en el que se encuentren. El sistema MobiGuide proporciona un soporte personalizado y basado en evidencia clínica tanto a profesionales médicos como a pacientes en todo momento y en todo lugar. La aplicación móvil del paciente representa el punto de acceso al servicio y, por tanto, es responsable en gran medida del éxito o fracaso del sistema. En MobiGuide, se ha incorporado a los pacientes desde el comienzo en el proceso de diseño y evaluación de la aplicación para garantizar una adecuada funcionalidad y usabilidad del sistema. En este trabajo presentamos la primera evaluación realizada por los pacientes mediante un tour virtual por la Aplicación de Paciente. Los resultados son altamente positivos y útiles para mejorar la aplicación, corregir defectos y conseguir la aplicación final esperada por los pacientes.
Resumo:
Outliers are objects that show abnormal behavior with respect to their context or that have unexpected values in some of their parameters. In decision-making processes, information quality is of the utmost importance. In specific applications, an outlying data element may represent an important deviation in a production process or a damaged sensor. Therefore, the ability to detect these elements could make the difference between making a correct and an incorrect decision. This task is complicated by the large sizes of typical databases. Due to their importance in search processes in large volumes of data, researchers pay special attention to the development of efficient outlier detection techniques. This article presents a computationally efficient algorithm for the detection of outliers in large volumes of information. This proposal is based on an extension of the mathematical framework upon which the basic theory of detection of outliers, founded on Rough Set Theory, has been constructed. From this starting point, current problems are analyzed; a detection method is proposed, along with a computational algorithm that allows the performance of outlier detection tasks with an almost-linear complexity. To illustrate its viability, the results of the application of the outlier-detection algorithm to the concrete example of a large database are presented.
Resumo:
Information Technology and Communications (ICT) is presented as the main element in order to achieve more efficient and sustainable city resource management, while making sure that the needs of the citizens to improve their quality of life are satisfied. A key element will be the creation of new systems that allow the acquisition of context information, automatically and transparently, in order to provide it to decision support systems. In this paper, we present a novel distributed system for obtaining, representing and providing the flow and movement of people in densely populated geographical areas. In order to accomplish these tasks, we propose the design of a smart sensor network based on RFID communication technologies, reliability patterns and integration techniques. Contrary to other proposals, this system represents a comprehensive solution that permits the acquisition of user information in a transparent and reliable way in a non-controlled and heterogeneous environment. This knowledge will be useful in moving towards the design of smart cities in which decision support on transport strategies, business evaluation or initiatives in the tourism sector will be supported by real relevant information. As a final result, a case study will be presented which will allow the validation of the proposal.
Resumo:
"May 1991."
Resumo:
"January 1991."
Resumo:
In both Australia and Brazil there are rapid changes occurring in the macroenvironment of the dairy industry. These changes are sometimes not noticed in the microenvironment of the farm, due to the labour-intensive nature of family farms, and the traditionally weak links between production and marketing. Trends in the external environment need to be discussed in a cooperative framework, to plan integrated actions for the dairy community as a whole and to demand actions from research, development and extension (R, D & E). This paper reviews the evolution of R, D & E in terms of paradigms and approaches, the present strategies used to identify dairy industry needs in Australia and Brazil, and presents a participatory strategy to design R, D & E actions for both countries. The strategy incorporates an integration of the opinions of key industry actors ( defined as members of the dairy and associated communities), especially farm suppliers ( input market), farmers, R, D & E people, milk processors and credit providers. The strategy also uses case studies with farm stays, purposive sampling, snowball interviewing techniques, semi-structured interviews, content analysis, focus group meetings, and feedback analysis, to refine the priorities for R, D & E actions in the region.
Resumo:
Power systems are large scale nonlinear systems with high complexity. Various optimization techniques and expert systems have been used in power system planning. However, there are always some factors that cannot be quantified, modeled, or even expressed by expert systems. Moreover, such planning problems are often large scale optimization problems. Although computational algorithms that are capable of handling large dimensional problems can be used, the computational costs are still very high. To solve these problems, in this paper, investigation is made to explore the efficiency and effectiveness of combining mathematic algorithms with human intelligence. It had been discovered that humans can join the decision making progresses by cognitive feedback. Based on cognitive feedback and genetic algorithm, a new algorithm called cognitive genetic algorithm is presented. This algorithm can clarify and extract human's cognition. As an important application of this cognitive genetic algorithm, a practical decision method for power distribution system planning is proposed. By using this decision method, the optimal results that satisfy human expertise can be obtained and the limitations of human experts can be minimized in the mean time.