954 resultados para crossed legs
Resumo:
A geogenic origin has been proposed in the aetiology of non-filarial elephantiasis of the feet and legs, recently renamed podoconiosis. Soil collected in an area of the Ethiopian Rift Valley, the borough of Ocholo, known for its high prevalence of podoconiosis (5.06%), has been submitted to mineral analysis. High values of sulphur (S), cerium (Ce), lanthanum (La) and neodymium (Nd), typical for basaltic bedrocks, were found. Of special interest were the values for zirconium (Zr) and beryllium (Be), 618 +/- 87 ppm and 4.6 +/- 0.5 ppm respectively, twice as high as those recorded for soils sampled in neighbouring areas where the prevalence of podoconiosis is low. To be noted also, a high content in vanadium, above 250 ppm, in half of the soil samples collected in this region. Year-long exposure of unprotected feet to Zr and Be, known for their ability to induce granuloma formation in the lymphoid tissue of man, and present in a clay rich in colloidal silica particle, highly abrasive to skin, is doubtlessly a factor involved in the development of lymph node sclerosis leading to elephantiasis.
Resumo:
Objective: The aim of this study was to describe the prevalence and characteristics of periodic legs movements of sleep (PLMS) in theadult general population. Methods: Data from 2162 subjects (51.2% women, mean SD age:58, 11 years, range: 40.5-84.4 years) participating in a population-based cohort study (HypnoLaus, Lausanne, Switzerland) wascollected. They completed a series of sleep related questionnaires and underwent polysomnographic recordings at home. PLMS index(PLMSI) was determined according to AASM 2007 criteria. APLMSI>15/h was considered to be of potential clinical significance. Conclusions: PLMS are highly prevalent in the general population. Age, male gender and RLS are independent predictors of a PLMSIhigher than 15/h. Further studies are needed to evaluate the clinical impact of PLMS.
Resumo:
A new subgenus Glossuropoda is proposed for Euglossa intersecta Latreille, 1837, as the type species. It is distinguished from Glossura by having a very peculiar configuration of the mid basitarsus of the male and lack of the median spur. Two new species Euglossa (Glossuropoda) hugonis, from Tabatinga, AM - Brasil, and Euglossa (Glossuropoda) juremae, from Vigia, PA - Brasil, belonging to the same subgenus but strickingly different from the type species by their prevalent green color with brassy and golden hue on the last abdominal segments and hind legs.
Resumo:
Trait decay may occur when selective pressures shift, owing to changes in environment or life style, rendering formerly adaptive traits non-functional or even maladaptive. It remains largely unknown if such decay would stem from multiple mutations with small effects or rather involve few loci with major phenotypic effects. Here, we investigate the decay of female sexual traits, and the genetic causes thereof, in a transition from haplodiploid sexual reproduction to endosymbiont-induced asexual reproduction in the parasitoid wasp Asobara japonica. We take advantage of the fact that asexual females cured of their endosymbionts produce sons instead of daughters, and that these sons can be crossed with sexual females. By combining behavioral experiments with crosses designed to introgress alleles from the asexual into the sexual genome, we found that sexual attractiveness, mating, egg fertilization and plastic adjustment of offspring sex ratio (in response to variation in local mate competition) are decayed in asexual A. japonica females. Furthermore, introgression experiments revealed that the propensity for cured asexual females to produce only sons (because of decayed sexual attractiveness, mating behavior and/or egg fertilization) is likely caused by recessive genetic effects at a single locus. Recessive effects were also found to cause decay of plastic sex-ratio adjustment under variable levels of local mate competition. Our results suggest that few recessive mutations drive decay of female sexual traits, at least in asexual species deriving from haplodiploid sexual ancestors.
Exploring Parallels Between Molecular Changes Induced in PNS by Aging and Demyelinating Neuropathies
Resumo:
The peripheral nervous system (PNS) is involved in many age-dependent neurological deficits, including numbness, pain, restless legs, trouble with walking and balance that are commonly found in the elderly. These symptoms generally result from demyelination and/or loss of axonal integrity. However, the precise identity of age-regulated molecular changes in either neuronal or glial compartments of the nerve is unclear. Interestingly, these deficiencies are also present in inherited neuropathies, where the expressivity of the rapid and early onset phenotypes is undeniably more severe than in normal aging. Nevertheless, especially the molecular changes underlying loss of axonal integrity in neuropathy condition are also poorly understood. To unravel molecular mechanisms affected by PNS aging, we used wildtype mice at 17 time-points from day of birth until senescence (28 months-old). For the neuropathy study, we focused on 56 day-old Schwann cell-specific neuropathy-inducing mutants, MPZCre/1/ LpinfE2-3/fE2-3 and MPZCre/1/ScapfE1/fE1 mice, that have, at this age, already developed neuropathic symptoms. Transcriptomes of dissected Schwann cell-containing endoneurium or sensory neuron-containing dorsal root ganglia have been analyzed throughout time or genotypes, using Illumina Bead Chips. Following data validation, we identified groups of differentially expressed genes in the development, aging and in the neuropathic mutants, in both glial and neuronal compartments. We detected substantial differences in the dynamics of changes in gene expression during development and aging between these two compartments. Furthermore, considering the above-mentioned phenotypic similarities, we integrated aging and mutant data. Interestingly, we observed that there are some parallels at the molecular level between processes involved in aging, which leads to less severe and more progressive PNS alterations, and in the rapid onset peripheral neuropathies. Apart from helping the understanding of molecular alterations underlying age-related PNS phenotypes, this data should also contribute to the identification of pathways that could be used as targets for therapeutical approaches to prevent complications associated with both aging and inherited forms of neuropathies.
Resumo:
Schwann cells synthesize a large amount of membrane that form a specialized structure called myelin that surrounds axons and facilitate the transmission of electrical signal along neurons in peripheral nervous system (PNS). Previous studies demonstrated that both Schwann cell differentiation and de-differentiation (in the situation of a nerve injury or demyelinating disease) are regulated by cell-intrinsic regulators including several transcription factors. In particular, the de-differentiation of mature Schwann cells is driven by the activation of multiple negative regulators of myelination including Sox2, c-Jun, Notch and Pax3, all usually expressed in immature Schwann cells and suppressed at the onset of myelination. In order to identify new regulators of myelination involved in the development of the PNS, we analyzed the gene-expression profiling data from developing PNS and from three models of demyelinating neuropathies. This analysis led to the identification of Sox4, a member of the Sox family of transcription factors, as a potential candidate. To characterize the molecular function of Sox4 in PNS, we generated two transgenic lines of mice, which overexpress Sox4 specifically in Schwann cells. Detailed analysis of these mice showed that the overexpression of Sox4 in Schwann cells causes a delay in progression of myelination between post-natal day 2 (P2) and P5. Our in vitro analysis suggested that Sox4 cDNA can be overexpressed while the protein translation is tightly regulated. Interestingly, we observed that Sox4 protein is stabilized in nerves of the CMT4C mouse, a model of the human neuropathy. We therefore crossed Sox4 transgenic mice with CMT4C mice and we observed that Sox4 overexpression exacerbated the neuropathy phenotype in these mice. While recognized as being crucial for the normal function of both neurons and myelinating glial cells, the processes that regulate the beginning of myelination and the nature of the neuro-glial cross-talk remains mostly unknown. In order to gain insight into the molecular pathways involved in the interactions between neurons and associated glial cells, we developed a neuron-glia co-culture system based on microfluidic chambers and successfully induced myelination in this system by ascorbic acid. Importantly, we observed that in addition to acting on Schwann cells, ascorbic acid also modulate neuronal/axonal NRG1/ErbB2-B3 signalling. The experimental setting used in our study thus allowed us to discover a novel phenomena of propagation for myelination in vitro. The further characterization of this event brought us to identify other compounds able to induce myelination: ADAMs secretases inhibitor GM6001 and cyclic-AMP. The results generated during my thesis project are therefore not only important for the advancement of our understanding of how the PNS works, but may also potentially help to develop new therapies aiming at improvement of PNS myelination under disease conditions. - Les cellules de Schwann synthétisent une grande quantité de membrane formant une structure spécialisée appelée myéline qui entoure les axones et facilite la transmission du signal électrique le long des neurones du système nerveux périphérique (SNP). Des études antérieures ont démontré que la différenciation et la dédifférenciation des cellules de Schwann (dans la situation d'une lésion nerveuse ou d'une maladie démyélinisante) sont régulées par des régulateurs cellulaires intrinsèques, incluant plusieurs facteurs de transcription. En particulier, la dédifférenciation des cellules de Schwann matures est contrôlée par l'activation de plusieurs régulateurs négatifs de la myélinisation dont Sox2, c-Jun, Notch et Pax3, tous habituellement exprimés dans des cellules de Schwann immatures et supprimés au début de la myélinisation. Afin d'identifier de nouveaux régulateurs de myélinisation impliqués dans le développement du SNP, nous avons analysé le profil d'expression génique durant le développement du SNP ainsi que dans trois modèles de neuropathies démyélinisantes. Cette analyse a mené à l'identification de Sox4, un membre de la famille des facteurs de transcription Sox, comme étant un candidat potentiel. Dans le but de caractériser la fonction moléculaire de Sox4 dans le SNP, nous avons généré deux lignées transgéniques de souris qui surexpriment Sox4 spécifiquement dans les cellules de Schwann. L'analyse détaillée de ces souris a montré que la surexpression de Sox4 dans les cellules de Schwann provoque un retard dans la progression de la myélinisation entre le jour postnatal 2 (P2) et P5. Notre analyse in vitro a suggéré que l'ADNc de Sox4 peut être surexprimé alors que la traduction des protéines est quand à elle étroitement régulée. De façon intéressante, nous avons observé que la protéine Sox4 est stabilisée dans les nerfs des souris CMT4C, un modèle de neuropathie humaine. Nous avons donc croisé les souris transgéniques Sox4 avec des souris CMT4C et avons observé que la surexpression de Sox4 exacerbe le phénotype de neuropathie chez ces souris. Bien que reconnus comme étant cruciaux pour le fonctionnement normal des neurones et des cellules gliales myélinisantes, les processus qui régulent le début de la myélinisation ainsi que la nature des interactions neurone-glie restent largement méconnus. Afin de mieux comprendre les mécanismes moléculaires impliqués dans les interactions entre les neurones et les cellules gliales leur étant associés, nous avons développé un système de co-culture neurone-glie basé sur des chambres microfluidiques et y avons induit avec succès la myélinisation avec de l'acide ascorbique. Étonnamment, nous avons remarqué que, en plus d'agir sur les cellules de Schwann, l'acide ascorbique module également la voie de signalisation neuronale/axonale NRG1/ErbB2-B3. Le protocole expérimental utilisé dans notre étude a ainsi permis de découvrir un nouveau phénomène de propagation de la myélinisation in vitro. La caractérisation plus poussée de ce phénomène nous a menés à identifier d'autres composés capables d'induire la myélinisation: L'inhibiteur de sécrétases ADAMs GM6001 et l'AMP cyclique. Les résultats obtenus au cours de mon projet de thèse ne sont donc pas seulement importants pour l'avancement de notre compréhension sur la façon dont le SNP fonctionne, mais peuvent aussi potentiellement aider à développer de nouvelles thérapies visant à l'amélioration de la myélinisation du SNP dans des conditions pathologiques.
Resumo:
Abstract Right hemispheric stroke aphasia (RHSA) rarely occurs in right- or left-handed patients with their language representation in right hemisphere (RH). For right-handers, the term crossed aphasia is used. Single cases, multiple cases reports, and reviews suggest more variable anatomo-clinical correlations. We included retrospectively from our stroke data bank 16 patients (right- and left-handed, and ambidextrous) with aphasia after a single first-ever ischemic RH stroke. A control group was composed of 25 successive patients with left hemispheric stroke and aphasia (LHSA). For each patient, we analyzed four modalities of language (spontaneous fluency, naming, repetition, and comprehension) and recorded eventual impairment: (1) on admission (hyperacute) and (2) between day 3 and 14 (acute). Lesion volume and location as measured on computed tomography (CT) and magnetic resonance imaging (MRI) were transformed into Talairach stereotaxic space. Nonparametric statistics were used to compare impaired/nonimpaired patients. Comprehension and repetition were less frequently impaired after RHSA (respectively, 56% and 50%) than after LHSA (respectively, 84% and 80%, P = 0.05 and 0.04) only at hyperacute phase. Among RHSA, fewer left-handers/ambidextrous than right-handers had comprehension disorders at second evaluation (P = 0.013). Mean infarct size was similar in RHSA and LHSA with less posterior RHSA lesions (caudal to the posterior commissure). Comprehension and repetition impairments were more often associated with anterior lesions in RHSA (Fisher's exact test, P < 0.05). Despite the small size of the cohort, our findings suggest increased atypical anatomo-functional correlations of RH language representation, particularly in non-right-handed patients. Rapport de synthèse : Des aphasies secondaires à un accident vasculaire ischémique cérébral (AVC) hémisphérique droit sont rarement rencontrées chez des patients droitiers ou gauchers avec une représentation du langage dans l'hémisphère droit. Chez les droitiers, on parle d'aphasie croisée. Plusieurs études sur le sujet ont suggéré des corrélations anatomocliniques plus variables. Dans notre étude, nous avons inclus rétrospectivement, à partir d'une base de données de patients avec un AVC, seize patients (droitiers, gauchers et ambidextres) souffrant d'une aphasie suite à un premier et unique AVC ischémique hémisphérique droit. Un groupe contrôle est composé de vingt-cinq patients successifs avec une aphasie suite à un AVC ischémique hémisphérique gauche. Pour chaque patient, nous avons analysé quatre modalités de langage, à savoir la fluence spontanée, la dénomination, la répétition et la compréhension et leur éventuelle atteinte à deux moments distincts : 1) à l'admission (phase hyperaiguë) et 2) entre le 3e et le 14e jour (phase aiguë). Le volume et la localisation de la lésion mesurés, soit sur un CT-scanner soit sur une imagerie par résonance magnétique cérébrale, ont été analysés à l'aide de l'échelle stéréotaxique de Talairach. Des statistiques non paramétriques ont été utilisées pour comparer les patients atteints et non atteints. . La compréhension et la répétition étaient moins souvent atteintes, seulement en phase hyperaiguë, après une aphasie suite à un AVC hémisphérique droit (resp. 56% et 50%) plutôt que gauche (resp. 84 % et 80%, p= 0.05 et 0.04). Parmi les aphasies suite à un AVC ischémique hémisphérique droit, moins de gauchers et d'ambidextres que de droitiers avaient des troubles de la compréhension lors de la seconde évaluation (p=0.013}. La .taille moyenne de la zone infarcie était semblable entre les aphasies droites et gauches, avec moins de lésions postérieures (caudale à la commissure postérieure) lors des aphasies droites. Les troubles de la répétition et de la compréhension étaient plus souvent associés à des lésions antérieures lors d'aphasie droite. (Fischer's exact test, p>0.05). Malgré la petite taille de notre cohorte de patients, ces résultats suggèrent une augmentation des corrélations anatomocliniques atypiques lors d'une représentation du langage dans l'hémisphère droit, surtout chez les patients non droitiers.
Resumo:
OBJECTIVES: Perioperative fluid accumulation determination is a challenge for the clinician. Bioelectrical impedance analysis (BIA) is a noninvasive method based on the electrical properties of tissues, which can assess body fluid compartments. The study aimed at assessing their changes in three types of surgery (thoracic, abdominal, and intracranial) requiring various regimens of fluid administration. DESIGN: Prospective descriptive trial. PATIENTS: A total of 26 patients scheduled for elective surgery were separated into three groups according to site of surgery: thoracic (n = 8), abdominal aortic (n = 8), and brain surgery (n = 10). SETTING: University teaching hospital. INTERVENTION: None. MEASUREMENTS: Whole body, segmental (arm, trunk, and legs) BIA at multiple frequency (0.5, 50, 100 kHz) was used to assess perioperative fluid accumulation after surgery. The fluid balances were calculated from the charts. RESULTS: The patients were aged 62+/-4 yrs. Fluid balances were 4.8+/-1.0 L, 4.1+/-0.5 L, and 1.9+/-0.3 L, respectively, in the three groups. In trunk surgery patients, fluid accumulation was detected as a drop in impedance in the operated area at all frequencies. In the operated area, there was an expansion of both intra- and extracellular compartments. A reduction in high frequencies' impedance in the legs was only detected after aortic surgery. Fluid accumulation and trunk impedance changes were strongly correlated. Neurosurgery only induced minor body fluid changes. CONCLUSIONS: Segmental BIA is able to detect and localize perioperative fluid accumulation. It may become a bedside tool to quantify and to localize fluid accumulation.
Resumo:
The morphology of the spiracles of fourth instar larva in eight sandfly species were examined by light and scanning electron microscopy. Species studied were: Lutzomyia longipalpis (Lutz & Neiva), L. ovallesi (Ortiz), L. youngi Feliciangeli & Murillo, L. evansi (Nuñez-Tovar), L. trinidadensis (Newstead), L. migonei (França), L. absonodonta Feliciangeli, and L. venezuelensis (Floch & Abonnenc). In larvae of all eight species both thoracic and abdominal spiracles are located at the top of a globular bulge. Their structure consists of a spiracular plate with a sclerotized central portion and a rose-like peripheral portion. The latter has circularly arranged papillae, separated from each other by elongated septa. Each papilla is longitudinally crossed by a fine cleft dividing it into two identical parts. The taxonomic and adaptative value of spiracular morphology is discussed
Resumo:
Background: To study the characteristics of vascular aphasia in a cohort of patients with a first-ever stroke. Methods: All patients admitted to the Lausanne neurology department for a first-ever stroke between 1979 and 2004 were included. Neurological examination including language was performed on admission. Stroke risk factors, stroke origin and location, associated symptoms and Rankin scale scores were recorded for each patient. The influence of these factors on aphasia frequency and subtypes was analyzed using logistic regression models. Results: 1,541 (26%) of patients included in this study had aphasia. The more frequent clinical presentations were expressive-receptive aphasia (38%) and mainly expressive aphasia (37%), whereas mainly receptive aphasia was less frequently observed (25%). In ischemic stroke, the frequency of aphasia increased with age (55% of nonaphasic vs. 61% of aphasic patients were more than 65 years old), female sex (40% of women in the nonaphasia group vs. 44% in the aphasia group) and risk factors for cardioembolic origin (coronary heart disease 20 vs. 26% and atrial fibrillation 15 vs. 24%). Stroke aphasia was more likely associated with superficial middle cerebral artery (MCA) stroke and leads to relevant disability. Clinical subtypes depended on stroke location and associated symptoms. Exceptions to the classic clinical-topographic correlations were not rare (26%). Finally, significant differences were found for patients with crossed aphasia in terms of stroke origin and aphasia subtypes. Conclusions: Risk factors for stroke aphasia are age, cardioembolic origin and superficial MCA stroke. Exceptions to classic clinical-topographic correlations are not rare. Stroke aphasia is associated with relevant disability. Stroke location and associated symptoms strongly influence aphasia subtypes.
Resumo:
Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of plants, improving plant nutrition and diversity. Evidence exists suggesting that AMF contain populations of genetically different nucleotypes coexisting in a common cytoplasm. This potentially has two important consequences for their genetics. First, by random distribution of nuclei at spore formation, new offspring of an AMF could receive different complements of nucleotypes compared to the parent or siblings-we consider this as segregation. Second, genetic exchange between AMF would allow the mixing of nuclei, altering nucleotype diversity in new spores. Because segregation was assumed not to occur and genetic exchange has only recently been demonstrated, no attempts have been made to test whether this affects the symbiosis with plants. Here, we show that segregation occurs in the AMF Glomus intraradices and can enhance the growth of rice up to five times, even though neither parental nor crossed AMF lines induced a positive growth response. This process also resulted in an alteration of symbiosis-specific gene transcription in rice. Our results demonstrate that manipulation of AMF genetics has important consequences for the symbiotic effects on plants and could be used to enhance the growth of globally important crops.
Resumo:
Maintaining a regular physical activity practice throughout lifetime is a challenge for most of us. This often means "resisting" against a physical environment and a social organization that promotes physical inactivity and discourage those who, fiercely, walk or try to commute by bike. So there's a little hero behind every doctor that distills the subtle potion of motivational interviewing against sedentary habits. Any hope of change in our living conditions, taking into account our natural need to move, is however not lost. This article illustrates the paths that are traced by collectivities in order that the advices we provide to our patients continue to make sense once the practice door is crossed.
Resumo:
AIMS/HYPOTHESIS: Excess glucose transport to embryos during diabetic pregnancy causes congenital malformations. The early postimplantation embryo expresses the gene encoding the high-Km GLUT2 (also known as SLC2A2) glucose transporter. The hypothesis tested here is that high-Km glucose transport by GLUT2 causes malformations resulting from maternal hyperglycaemia during diabetic pregnancy. MATERIALS AND METHODS: Glut2 mRNA was assayed by RT-PCR. The Km of embryo glucose transport was determined by measuring 0.5-20 mmol/l 2-deoxy[3H]glucose transport. To test whether the GLUT2 transporter is required for neural tube defects resulting from maternal hyperglycaemia, Glut2+/- mice were crossed and transient hyperglycaemia was induced by glucose injection on day 7.5 of pregnancy. Embryos were recovered on day 10.5, and the incidence of neural tube defects in wild-type, Glut2+/- and Glut2-/- embryos was scored. RESULTS: Early postimplantation embryos expressed Glut2, and expression was unaffected by maternal diabetes. Moreover, glucose transport by these embryos showed Michaelis-Menten kinetics of 16.19 mmol/l, consistent with transport mediated by GLUT2. In pregnancies made hyperglycaemic on day 7.5, neural tube defects were significantly increased in wild-type embryos, but Glut2+/- embryos were partially protected from neural tube defects, and Glut2-/- embryos were completely protected from these defects. The frequency of occurrence of wild-type, Glut2+/- and Glut2-/- embryos suggests that the presence of Glut2 alleles confers a survival advantage in embryos before day 10.5. CONCLUSIONS/INTERPRETATIONS: High-Km glucose transport by the GLUT2 glucose transporter during organogenesis is responsible for the embryopathic effects of maternal diabetes.
Resumo:
The caspase-3-generated RasGAP N-terminal fragment (fragment N) inhibits apoptosis in a Ras-PI3K-Akt-dependent manner. Fragment N protects various cell types, including insulin-secreting cells, against different types of stresses. Whether fragment N exerts a protective role during the development of type 1 diabetes is however not known. Non-obese diabetic (NOD) mice represent a well-known model for spontaneous development of type 1 diabetes that shares similarities with the diseases encountered in humans. To assess the role of fragment N in type 1 diabetes development, a transgene encoding fragment N under the control of the rat insulin promoter (RIP) was back-crossed into the NOD background creating the NOD-RIPN strain. Despite a mosaic expression of fragment N in the beta cell population of NOD-RIPN mice, islets isolated from these mice were more resistant to apoptosis than control NOD islets. Islet lymphocytic infiltration and occurrence of a mild increase in glycemia developed with the same kinetics in both strains. However, the period of time separating the mild increase in glycemia and overt diabetes was significantly longer in NOD-RIPN mice compared to the control NOD mice. There was also a significant decrease in the number of apoptotic beta cells in situ at 16 weeks of age in the NOD-RIPN mice. Fragment N exerts therefore a protective effect on beta cells within the pro-diabetogenic NOD background and this prevents a fast progression from mild to overt diabetes.
Resumo:
Given positive integers n and m, we consider dynamical systems in which n copies of a topological space is homeomorphic to m copies of that same space. The universal such system is shown to arise naturally from the study of a C*-algebra we denote by Om;n, which in turn is obtained as a quotient of the well known Leavitt C*-algebra Lm;n, a process meant to transform the generating set of partial isometries of Lm;n into a tame set. Describing Om;n as the crossed-product of the universal (m; n) -dynamical system by a partial action of the free group Fm+n, we show that Om;n is not exact when n and m are both greater than or equal to 2, but the corresponding reduced crossed-product, denoted Or m;n, is shown to be exact and non-nuclear. Still under the assumption that m; n &= 2, we prove that the partial action of Fm+n is topologically free and that Or m;n satisfies property (SP) (small projections). We also show that Or m;n admits no finite dimensional representations. The techniques developed to treat this system include several new results pertaining to the theory of Fell bundles over discrete groups.