949 resultados para copy number variation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pichia pastoris, a methylotrophic yeast, is an established system for the production of heterologous proteins, particularly biopharmaceuticals and industrial enzymes. To maximise and optimise the production of recombinant products, recent molecular research has focused on numerous issues including the design of expression vectors, optimisation of gene copy number, co-expression of secretory proteins such as chaperones, engineering of glycosylation and secretory pathways, etc. However, the physiological effects of different cultivation strategies are often difficult to separate from the molecular effects of the gene construct (e.g., cellular stress through over-expression or incorrect post-translational processing). Hence, overall system optimisation is difficult, even though it is urgently required in order to describe and understand the behaviour of new molecular constructs. This review focuses on particular aspects of recombinant protein production related to variations in biomass growth and their implications for strain design and screening, as well as on the concept of rational comparisons between cultivation systems for the development of specific production processes in bioreactors. The relationship between specific formation rates of secreted recombinant proteins, qp, and specific growth rates, μ, has been analysed in a conceptual attempt to compare different systems, particularly those based on AOX1/methanol and GAP/glucose, and this has now evolved into a pivotal concept for bioprocess engineering of P. pastoris.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The placenta is the site of synthesis of various peptide and steroid hormones related to pregnancy. Human placental lactogen (hPL) is the predominant peptide hormone secreted by term placenta and its synthesis is tissue-specific and coupled to placenta development. The objective of this work was to study the structure and expression of the hPL.^ Poly(A('+))RNA from human term placenta was translated in a mouse-derived cell-free system. A major band corresponding to pre-hPL and a minor band comigrating with mature hPL, represent (TURN)15% of the total radioactively labeled proteins. Analysis of the poly(A('+))RNA showed a prominent band at approximately 860 nucleotides. A corresponding band was observed in Northern blots of total RNA, hybridized with {('32)P}-labeled recombinant plasmid containing a portion of hPL cDNA. Similar analyses of nuclear RNA showed at least four additional bands at 990, 1200, 1460 and 1760 nucleotides, respectively, which are likely precursors of hPL mRNA. Poly(A('+))RNA was used to construct a cDNA library, of which approximately 5% of the clones were found to hybridize to hPL DNA sequences. Heteroduplexes constructed between a clone containing a 815 bp hPL cDNA insert and a hPL genomic DNA clone revealed four small intervening sequences which can account for the lengths observed in hnRNA molecules.^ Recombinant plasmid HCS-pBR322 containing a 550 bp insert of a cDNA transcript of human placental lactogen (hPL) mRNA was ('3)H-labeled an hybridized in situ to human chromosome preparations. These experiments allowed assignment of the hPL and growth hormone (hGH) genes, which have over 90% nucleotide homology in their coding sequences, to band q22-24 of chromosome 17. A gene copy number experiment showed that both genes are present in (TURN)3 copies per haploid genome.^ Experiments were designed to determine if all members of the hPL gene cluster, consisting of four non-allelic genes, are transcribed in term placenta. Advantage was taken of differences in restriction endonuclease sites in the coding portions of the different hPL genes, to distinguish the putative cDNAs of the transcriptionally active genes. Two genes were found to be represented in the cDNA library and their cDNA transcripts were isolated and characterized. Three independent methods showed that their corresponding mRNAs are about equally represented in the hPL mRNA population. The two cDNAs code for prehPL proteins which differ at a single amino acid position. However the secreted hPLs have identical amino acid sequences. A tetramer insertion duplication was found in a palindrome area of the 3' untranslated region of one of the hPL mRNAs. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amplification of human chromosome 20q DNA is the most frequently occurring chromosomal abnormality detected in sporadic colorectal carcinomas and shows significant correlation with liver metastases. Through comprehensive high-resolution microarray comparative genomic hybridization and microarray gene expression profiling, we have characterized chromosome 20q amplicon genes associated with human colorectal cancer metastasis in two in vitro metastasis model systems. The results revealed increasing complexity of the 20q genomic profile from the primary tumor-derived cell lines to the lymph node and liver metastasis derived cell lines. Expression analysis of chromosome 20q revealed a subset of over expressed genes residing within the regions of genomic copy number gain in all the tumor cell lines, suggesting these are Chromosome 20q copy number responsive genes. Bases on their preferential expression levels in the model system cell lines and known biological function, four of the over expressed genes mapping to the common intervals of genomic copy gain were considered the most promising candidate colorectal metastasis-associated genes. Validation of genomic copy number and expression array data was carried out on these genes, with one gene, DNMT3B, standing out as expressed at a relatively higher levels in the metastasis-derived cell lines compared with their primary-derived counterparts in both the models systems analyzed. The data provide evidence for the role of chromosome 20q genes with low copy gain and elevated expression in the clonal evolution of metastatic cells and suggests that such genes may serve as early biomarkers of metastatic potential. The data also support the utility of the combined microarray comparative genomic hybridization and expression array analysis for identifying copy number responsive genes in areas of low DNA copy gain in cancer cells. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

SNP genotyping arrays have been developed to characterize single-nucleotide polymorphisms (SNPs) and DNA copy number variations (CNVs). The quality of the inferences about copy number can be affected by many factors including batch effects, DNA sample preparation, signal processing, and analytical approach. Nonparametric and model-based statistical algorithms have been developed to detect CNVs from SNP genotyping data. However, these algorithms lack specificity to detect small CNVs due to the high false positive rate when calling CNVs based on the intensity values. Association tests based on detected CNVs therefore lack power even if the CNVs affecting disease risk are common. In this research, by combining an existing Hidden Markov Model (HMM) and the logistic regression model, a new genome-wide logistic regression algorithm was developed to detect CNV associations with diseases. We showed that the new algorithm is more sensitive and can be more powerful in detecting CNV associations with diseases than an existing popular algorithm, especially when the CNV association signal is weak and a limited number of SNPs are located in the CNV.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well accepted that tumorigenesis is a multi-step procedure involving aberrant functioning of genes regulating cell proliferation, differentiation, apoptosis, genome stability, angiogenesis and motility. To obtain a full understanding of tumorigenesis, it is necessary to collect information on all aspects of cell activity. Recent advances in high throughput technologies allow biologists to generate massive amounts of data, more than might have been imagined decades ago. These advances have made it possible to launch comprehensive projects such as (TCGA) and (ICGC) which systematically characterize the molecular fingerprints of cancer cells using gene expression, methylation, copy number, microRNA and SNP microarrays as well as next generation sequencing assays interrogating somatic mutation, insertion, deletion, translocation and structural rearrangements. Given the massive amount of data, a major challenge is to integrate information from multiple sources and formulate testable hypotheses. This thesis focuses on developing methodologies for integrative analyses of genomic assays profiled on the same set of samples. We have developed several novel methods for integrative biomarker identification and cancer classification. We introduce a regression-based approach to identify biomarkers predictive to therapy response or survival by integrating multiple assays including gene expression, methylation and copy number data through penalized regression. To identify key cancer-specific genes accounting for multiple mechanisms of regulation, we have developed the integIRTy software that provides robust and reliable inferences about gene alteration by automatically adjusting for sample heterogeneity as well as technical artifacts using Item Response Theory. To cope with the increasing need for accurate cancer diagnosis and individualized therapy, we have developed a robust and powerful algorithm called SIBER to systematically identify bimodally expressed genes using next generation RNAseq data. We have shown that prediction models built from these bimodal genes have the same accuracy as models built from all genes. Further, prediction models with dichotomized gene expression measurements based on their bimodal shapes still perform well. The effectiveness of outcome prediction using discretized signals paves the road for more accurate and interpretable cancer classification by integrating signals from multiple sources.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Overexpression and amplification of HER2/neu have been documented in many primary tumors, most notably in breast. Not only do approximately 30% of breast cancer patients carry tumors that overexpress the gene, but those that do generally have shorter overall and disease-free survival times than patients with tumors expressing low levels of HER2/neu. Thus, overexpression of HER2/neu plays an important role in the pathogenesis of breast cancer. We have examined the mechanisms that result in HER2/neu overexpression in breast cancer by using, as a model system, established breast cancer cell lines that express much higher levels of HER2/neu mRNA than normal breast tissue while maintaining a near normal HER2/neu gene copy number. Nuclear run-on experiments indicate that the breast cancer cell lines MDA-MB453, BT483, and BT474 have an increased HER2/neu gene transcription rate. By using HER2/neu promoter-CAT constructs, we have found that the enhanced HER2/neu transcription rate in MDA-MB453 cells is due to activation of the gene in trans, while the enhanced transcription rate in BT483 cells is due to activation of the gene in either trans or cis. In BT474 cells, transcriptional upregulation is primarily due to gene amplification. Since the levels of increased transcription are not as high as the levels of HER2/neu mRNA in any of these three lines, post-transcriptional deregulation that increases HER2/neu expression must also be functioning in these cells. The half-life of HER2/neu mRNA was measured and found to be equivalent in these lines as in a control. Thus, the post-transcriptional deregulation is not increased stability of the HER2/neu transcript.^ Much work has been performed in characterizing the altered trans-acting factor involved in increased HER2/neu transcription in MDA-MB453 cells. Using promoter deletion constructs linked to a reporter gene, the region responsive to this factor was localized in the rat neu promoter. When human HER2/neu promoter constructs were used, the homologous sequence in the human promoter was identified. Furthermore, a number of protein/DNA complexes are detected when these promoter regions are used in gel mobility shift assays. UV-crosslinking experiments indicate DNA-binding proteins of roughly 110 kDa, 70 kDa, and 35 kDa are capable of interacting with the human promoter element. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We evaluated above- and belowground ecosystem changes in a 16 year, combined fertilization and warming experiment in a High Arctic tundra deciduous shrub heath (Alexandra Fiord, Ellesmere Island, NU, Canada). Soil emissions of the three key greenhouse gases (GHGs) (carbon dioxide, methane, and nitrous oxide) were measured in mid-July 2009 using soil respiration chambers attached to a FTIR system. Soil chemical and biochemical properties including Q10 values for CO2, CH4, and N2O, Bacteria and Archaea assemblage composition, and the diversity and prevalence of key nitrogen cycling genes including bacterial amoA, crenarchaeal amoA, and nosZ were measured. Warming and fertilization caused strong increases in plant community cover and height but had limited effects on GHG fluxes and no substantial effect on soil chemistry or biochemistry. Similarly, there was a surprising lack of directional shifts in the soil microbial community as a whole or any change at all in microbial functional groups associated with CH4 consumption or N2O cycling in any treatment. Thus, it appears that while warming and increased nutrient availability have strongly affected the plant community over the last 16 years, the belowground ecosystem has not yet responded. This resistance of the soil ecosystem has resulted in limited changes in GHG fluxes in response to the experimental treatments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two 7-day mesocosm experiments were conducted in October 2012 at the Instituto Nacional de Desenvolvimento das Pescas (INDP), Mindelo, Cape Verde. Surface water was collected at night before the start of the respective experiment with RV Islândia south of São Vicente (16°44.4'N, 25°09.4'W) and transported to shore using four 600L food safe intermediate bulk containers. Sixteen mesocosm bags were distributed in four flow-through water baths and shaded with blue, transparent lids to approximately 20% of surface irradiation. Mesocosm bags were filled from the containers by gravity, using a submerged hose to minimize bubbles. The accurate volume inside the individual bags was calculated after addition of 1.5 mmol silicate and measuring the resulting silicate concentration. The volume ranged from 105.5 to 145 L. The experimental manipulation comprised addition of different amounts of inorganic N and P. In the first experiment, the P supply was changed at constant N supply in thirteen of the sixteen units, while in the second experiment the N supply was changed at constant P supply in twelve of the sixteen units. In addition to this, "cornerpoints" were chosen that were repeated during both experiments. Four cornerpoints should have been repeated, but setting the nutrient levels in one mesocosm was not succesfull and therefore this mesocosm also was set at the center point conditions. Experimental treatments were evenly distributed between the four water baths. Initial sampling of the mesocosms on day 1 of each run was conducted between 9:45 and 11:30. After nutrient manipulation, sampling was conducted on a daily basis between 09:00 and 10:30 for days 2 to 8.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean acidification influences sediment/water nitrogen fluxes, possibly by impacting on the microbial process of ammonia oxidation. To investigate this further, undisturbed sediment cores collected from Ny Alesund harbour (Svalbard) were incubated with seawater adjusted to CO2 concentrations of 380, 540, 760, 1,120 and 3,000 µatm. DNA and RNA were extracted from the sediment surface after 14 days' exposure and the abundance of bacterial and archaeal ammonia oxidising (amoA) genes and transcripts quantified using quantitative polymerase chain reaction. While there was no change to the abundance of bacterial amoA genes, an increase to 760 µatm pCO2 reduced the abundance of bacterial amoA transcripts by 65 %, and this was accompanied by a shift in the composition of the active community. In contrast, archaeal amoA gene and transcript abundance both doubled at 3,000 µatm, with an increase in species richness also apparent. This suggests that ammonia oxidising bacteria and archaea in marine sediments have different pH optima, and the impact of elevated CO2 on N cycling may be dependent on the relative abundances of these two major microbial groups. Further evidence of a shift in the balance of key N cycling groups was also evident: the abundance of nirS-type denitrifier transcripts decreased alongside bacterial amoA transcripts, indicating that NO3 ? produced by bacterial nitrification fuelled denitrification. An increase in the abundance of Planctomycete-specific 16S rRNA, the vast majority of which grouped with known anammox bacteria, was also apparent at 3,000 µatm pCO2. This could indicate a possible shift from coupled nitrification-denitrification to anammox activity at elevated CO2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of spliced leader RNA (SL RNA) in trans-splicing in Caenorhabditis elegans has been studied through a combination of in vitro mutagenesis and in vivo complementation of rrs-1 mutant nematodes, which lack endogenous SL1 RNA. Three classes of mutant SL1 RNAs have been found—those that rescue the lethal phenotype at low concentration of transforming DNA, those that rescue at high but not low concentration, and those that do not rescue at all. These studies showed that some mutations in the otherwise highly conserved 22-nt spliced leader are tolerated for splicing and post-splicing events. A longer spliced leader also can be tolerated but only when present in high copy number. Changes in the first 16 nucleotides result in the appearance of no SL RNA, consistent with the in vitro studies by others showing that the SL1 RNA promoter partly resides within the spliced leader sequence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Eukaryotic viruses can maintain latency in dividing cells as extrachromosomal nuclear plasmids. Segregation and nuclear retention of DNA is, therefore, a key issue in retaining copy number. The E2 enhancer protein of the papillomaviruses is required for viral DNA replication and transcription. Viral mutants that prevent phosphorylation of the bovine papillomavirus type 1 (BPV) E2 protein are transformation-defective, despite normal viral gene expression and replication function. Cell colonies harboring such mutants show sectoring of viral DNA and are unable to maintain the episome. We find that transforming viral DNA attaches to mitotic chromosomes, in contrast to the mutant genome encoding the E2 phosphorylation mutant. Second-site suppressor mutations were uncovered in both E1 and E2 genes that allow for transformation, maintenance, and chromosomal attachment. E2 protein was also found to colocalize to mitotic chromosomes, whereas the mutant did not, suggesting a direct role for E2 in viral attachment to chromosomes. Such viral hitch-hiking onto cellular chromosomes is likely to provide a general mechanism for maintaining nuclear plasmids.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analysis of the genetic changes in human tumors is often problematical because of the presence of normal stroma and the limited availability of pure tumor DNA. However, large amounts of highly reproducible “representations” of tumor and normal genomes can be made by PCR from nanogram amounts of restriction endonuclease cleaved DNA that has been ligated to oligonucleotide adaptors. We show here that representations are useful for many types of genetic analyses, including measuring relative gene copy number, loss of heterozygosity, and comparative genomic hybridization. Representations may be prepared even from sorted nuclei from fixed and archived tumor biopsies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plasmids that contain synthetic genes coding for small oligoribonucleotides called external guide sequences (EGSs) have been introduced into strains of Escherichia coli harboring antibiotic resistance genes. The EGSs direct RNase P to cleave the mRNAs transcribed from these genes thereby converting the phenotype of drug-resistant cells to drug sensitivity. Increasing the EGS-to-target mRNA ratio by changing gene copy number or the number of EGSs complementary to different target sites enhances the efficiency of the conversion process. We demonstrate a general method for the efficient phenotypic conversion of drug-resistant bacterial cultures.