EPOCA Svalbard 2009 benthic experiment: Serripes study, 2009
Data(s) |
12/09/2011
|
---|---|
Resumo |
Ocean acidification influences sediment/water nitrogen fluxes, possibly by impacting on the microbial process of ammonia oxidation. To investigate this further, undisturbed sediment cores collected from Ny Alesund harbour (Svalbard) were incubated with seawater adjusted to CO2 concentrations of 380, 540, 760, 1,120 and 3,000 µatm. DNA and RNA were extracted from the sediment surface after 14 days' exposure and the abundance of bacterial and archaeal ammonia oxidising (amoA) genes and transcripts quantified using quantitative polymerase chain reaction. While there was no change to the abundance of bacterial amoA genes, an increase to 760 µatm pCO2 reduced the abundance of bacterial amoA transcripts by 65 %, and this was accompanied by a shift in the composition of the active community. In contrast, archaeal amoA gene and transcript abundance both doubled at 3,000 µatm, with an increase in species richness also apparent. This suggests that ammonia oxidising bacteria and archaea in marine sediments have different pH optima, and the impact of elevated CO2 on N cycling may be dependent on the relative abundances of these two major microbial groups. Further evidence of a shift in the balance of key N cycling groups was also evident: the abundance of nirS-type denitrifier transcripts decreased alongside bacterial amoA transcripts, indicating that NO3 ? produced by bacterial nitrification fuelled denitrification. An increase in the abundance of Planctomycete-specific 16S rRNA, the vast majority of which grouped with known anammox bacteria, was also apparent at 3,000 µatm pCO2. This could indicate a possible shift from coupled nitrification-denitrification to anammox activity at elevated CO2. |
Formato |
text/tab-separated-values, 47660 data points |
Identificador |
https://doi.pangaea.de/10.1594/PANGAEA.769754 doi:10.1594/PANGAEA.769754 |
Idioma(s) |
en |
Publicador |
PANGAEA |
Relação |
Lavigne, Héloise; Epitalon, Jean-Marie; Gattuso, Jean-Pierre (2014): seacarb: seawater carbonate chemistry with R. R package version 3.0. https://cran.r-project.org/package=seacarb |
Direitos |
Access constraints: access rights needed |
Fonte |
Supplement to: Tait, Karen; Laverock, Bonnie; Widdicombe, Stephen (2013): Response of an Arctic Sediment Nitrogen Cycling Community to Increased CO2. Estuaries and Coasts, 37(3), 724-735, doi:10.1007/s12237-013-9709-x |
Palavras-Chave | #Alkalinity, total; amoA gene, copy number in sediment; Aragonite saturation state; Aragonite saturation state, standard deviation; Arctic; Band presence/absence; Bicarbonate ion; biogeochemistry; BRcommunity; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; community composition; EPOCA; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene transcripts in sediments; Identification; laboratory; molecular biology; OA-ICC; Ocean Acidification International Coordination Centre; other process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; prokaryotes; Salinity; Sample ID; sediment; Temperature, water; Temperature, water, standard deviation |
Tipo |
Dataset |