916 resultados para continuous-resource model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A procedure for characterizing global uncertainty of a rainfall-runoff simulation model based on using grey numbers is presented. By using the grey numbers technique the uncertainty is characterized by an interval; once the parameters of the rainfall-runoff model have been properly defined as grey numbers, by using the grey mathematics and functions it is possible to obtain simulated discharges in the form of grey numbers whose envelope defines a band which represents the vagueness/uncertainty associated with the simulated variable. The grey numbers representing the model parameters are estimated in such a way that the band obtained from the envelope of simulated grey discharges includes an assigned percentage of observed discharge values and is at the same time as narrow as possible. The approach is applied to a real case study highlighting that a rigorous application of the procedure for direct simulation through the rainfall-runoff model with grey parameters involves long computational times. However, these times can be significantly reduced using a simplified computing procedure with minimal approximations in the quantification of the grey numbers representing the simulated discharges. Relying on this simplified procedure, the conceptual rainfall-runoff grey model is thus calibrated and the uncertainty bands obtained both downstream of the calibration process and downstream of the validation process are compared with those obtained by using a well-established approach, like the GLUE approach, for characterizing uncertainty. The results of the comparison show that the proposed approach may represent a valid tool for characterizing the global uncertainty associable with the output of a rainfall-runoff simulation model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change has resulted in substantial variations in annual extreme rainfall quantiles in different durations and return periods. Predicting the future changes in extreme rainfall quantiles is essential for various water resources design, assessment, and decision making purposes. Current Predictions of future rainfall extremes, however, exhibit large uncertainties. According to extreme value theory, rainfall extremes are rather random variables, with changing distributions around different return periods; therefore there are uncertainties even under current climate conditions. Regarding future condition, our large-scale knowledge is obtained using global climate models, forced with certain emission scenarios. There are widely known deficiencies with climate models, particularly with respect to precipitation projections. There is also recognition of the limitations of emission scenarios in representing the future global change. Apart from these large-scale uncertainties, the downscaling methods also add uncertainty into estimates of future extreme rainfall when they convert the larger-scale projections into local scale. The aim of this research is to address these uncertainties in future projections of extreme rainfall of different durations and return periods. We plugged 3 emission scenarios with 2 global climate models and used LARS-WG, a well-known weather generator, to stochastically downscale daily climate models’ projections for the city of Saskatoon, Canada, by 2100. The downscaled projections were further disaggregated into hourly resolution using our new stochastic and non-parametric rainfall disaggregator. The extreme rainfall quantiles can be consequently identified for different durations (1-hour, 2-hour, 4-hour, 6-hour, 12-hour, 18-hour and 24-hour) and return periods (2-year, 10-year, 25-year, 50-year, 100-year) using Generalized Extreme Value (GEV) distribution. By providing multiple realizations of future rainfall, we attempt to measure the extent of total predictive uncertainty, which is contributed by climate models, emission scenarios, and downscaling/disaggregation procedures. The results show different proportions of these contributors in different durations and return periods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While the simulation of flood risks originating from the overtopping of river banks is well covered within continuously evaluated programs to improve flood protection measures, flash flooding is not. Flash floods are triggered by short, local thunderstorm cells with high precipitation intensities. Small catchments have short response times and flow paths and convective thunder cells may result in potential flooding of endangered settlements. Assessing local flooding and pathways of flood requires a detailed hydraulic simulation of the surface runoff. Hydrological models usually do not incorporate surface runoff at this detailedness but rather empirical equations are applied for runoff detention. In return 2D hydrodynamic models usually do not allow distributed rainfall as input nor are any types of soil/surface interaction implemented as in hydrological models. Considering several cases of local flash flooding during the last years the issue emerged for practical reasons but as well as research topics to closing the model gap between distributed rainfall and distributed runoff formation. Therefore, a 2D hydrodynamic model, depth-averaged flow equations using the finite volume discretization, was extended to accept direct rainfall enabling to simulate the associated runoff formation. The model itself is used as numerical engine, rainfall is introduced via the modification of waterlevels at fixed time intervals. The paper not only deals with the general application of the software, but intends to test the numerical stability and reliability of simulation results. The performed tests are made using different artificial as well as measured rainfall series as input. Key parameters of the simulation such as losses, roughness or time intervals for water level manipulations are tested regarding their impact on the stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Short-term Water Information and Forecasting Tools (SWIFT) is a suite of tools for flood and short-term streamflow forecasting, consisting of a collection of hydrologic model components and utilities. Catchments are modeled using conceptual subareas and a node-link structure for channel routing. The tools comprise modules for calibration, model state updating, output error correction, ensemble runs and data assimilation. Given the combinatorial nature of the modelling experiments and the sub-daily time steps typically used for simulations, the volume of model configurations and time series data is substantial and its management is not trivial. SWIFT is currently used mostly for research purposes but has also been used operationally, with intersecting but significantly different requirements. Early versions of SWIFT used mostly ad-hoc text files handled via Fortran code, with limited use of netCDF for time series data. The configuration and data handling modules have since been redesigned. The model configuration now follows a design where the data model is decoupled from the on-disk persistence mechanism. For research purposes the preferred on-disk format is JSON, to leverage numerous software libraries in a variety of languages, while retaining the legacy option of custom tab-separated text formats when it is a preferred access arrangement for the researcher. By decoupling data model and data persistence, it is much easier to interchangeably use for instance relational databases to provide stricter provenance and audit trail capabilities in an operational flood forecasting context. For the time series data, given the volume and required throughput, text based formats are usually inadequate. A schema derived from CF conventions has been designed to efficiently handle time series for SWIFT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the increase in water demand and hydropower energy, it is getting more important to operate hydraulic structures in an efficient manner while sustaining multiple demands. Especially, companies, governmental agencies, consultant offices require effective, practical integrated tools and decision support frameworks to operate reservoirs, cascades of run-of-river plants and related elements such as canals by merging hydrological and reservoir simulation/optimization models with various numerical weather predictions, radar and satellite data. The model performance is highly related with the streamflow forecast, related uncertainty and its consideration in the decision making. While deterministic weather predictions and its corresponding streamflow forecasts directly restrict the manager to single deterministic trajectories, probabilistic forecasts can be a key solution by including uncertainty in flow forecast scenarios for dam operation. The objective of this study is to compare deterministic and probabilistic streamflow forecasts on an earlier developed basin/reservoir model for short term reservoir management. The study is applied to the Yuvacık Reservoir and its upstream basin which is the main water supply of Kocaeli City located in the northwestern part of Turkey. The reservoir represents a typical example by its limited capacity, downstream channel restrictions and high snowmelt potential. Mesoscale Model 5 and Ensemble Prediction System data are used as a main input and the flow forecasts are done for 2012 year using HEC-HMS. Hydrometeorological rule-based reservoir simulation model is accomplished with HEC-ResSim and integrated with forecasts. Since EPS based hydrological model produce a large number of equal probable scenarios, it will indicate how uncertainty spreads in the future. Thus, it will provide risk ranges in terms of spillway discharges and reservoir level for operator when it is compared with deterministic approach. The framework is fully data driven, applicable, useful to the profession and the knowledge can be transferred to other similar reservoir systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A three-dimensional time-dependent hydrodynamic and heat transport model of Lake Binaba, a shallow and small dam reservoir in Ghana, emphasizing the simulation of dynamics and thermal structure has been developed. Most numerical studies of temperature dynamics in reservoirs are based on one- or two-dimensional models. These models are not applicable for reservoirs characterized with complex flow pattern and unsteady heat exchange between the atmosphere and water surface. Continuity, momentum and temperature transport equations have been solved. Proper assignment of boundary conditions, especially surface heat fluxes, has been found crucial in simulating the lake’s hydrothermal dynamics. This model is based on the Reynolds Average Navier-Stokes equations, using a Boussinesq approach, with a standard k − ε turbulence closure to solve the flow field. The thermal model includes a heat source term, which takes into account the short wave radiation and also heat convection at the free surface, which is function of air temperatures, wind velocity and stability conditions of atmospheric boundary layer over the water surface. The governing equations of the model have been solved by OpenFOAM; an open source, freely available CFD toolbox. As its core, OpenFOAM has a set of efficient C++ modules that are used to build solvers. It uses collocated, polyhedral numerics that can be applied on unstructured meshes and can be easily extended to run in parallel. A new solver has been developed to solve the hydrothermal model of lake. The simulated temperature was compared against a 15 days field data set. Simulated and measured temperature profiles in the probe locations show reasonable agreement. The model might be able to compute total heat storage of water bodies to estimate evaporation from water surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Canada releases over 150 billion litres of untreated and undertreated wastewater into the water environment every year1. To clean up urban wastewater, new Federal Wastewater Systems Effluent Regulations (WSER) on establishing national baseline effluent quality standards that are achievable through secondary wastewater treatment were enacted on July 18, 2012. With respect to the wastewater from the combined sewer overflows (CSO), the Regulations require the municipalities to report the annual quantity and frequency of effluent discharges. The City of Toronto currently has about 300 CSO locations within an area of approximately 16,550 hectares. The total sewer length of the CSO area is about 3,450 km and the number of sewer manholes is about 51,100. A system-wide monitoring of all CSO locations has never been undertaken due to the cost and practicality. Instead, the City has relied on estimation methods and modelling approaches in the past to allow funds that would otherwise be used for monitoring to be applied to the reduction of the impacts of the CSOs. To fulfill the WSER requirements, the City is now undertaking a study in which GIS-based hydrologic and hydraulic modelling is the approach. Results show the usefulness of this for 1) determining the flows contributing to the combined sewer system in the local and trunk sewers for dry weather flow, wet weather flow, and snowmelt conditions; 2) assessing hydraulic grade line and surface water depth in all the local and trunk sewers under heavy rain events; 3) analysis of local and trunk sewer capacities for future growth; and 4) reporting of the annual quantity and frequency of CSOs as per the requirements in the new Regulations. This modelling approach has also allowed funds to be applied toward reducing and ultimately eliminating the adverse impacts of CSOs rather than expending resources on unnecessary and costly monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, two international standard organizations, ISO and OGC, have done the work of standardization for GIS. Current standardization work for providing interoperability among GIS DB focuses on the design of open interfaces. But, this work has not considered procedures and methods for designing river geospatial data. Eventually, river geospatial data has its own model. When we share the data by open interface among heterogeneous GIS DB, differences between models result in the loss of information. In this study a plan was suggested both to respond to these changes in the information envirnment and to provide a future Smart River-based river information service by understanding the current state of river geospatial data model, improving, redesigning the database. Therefore, primary and foreign key, which can distinguish attribute information and entity linkages, were redefined to increase the usability. Database construction of attribute information and entity relationship diagram have been newly redefined to redesign linkages among tables from the perspective of a river standard database. In addition, this study was undertaken to expand the current supplier-oriented operating system to a demand-oriented operating system by establishing an efficient management of river-related information and a utilization system, capable of adapting to the changes of a river management paradigm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the field of operational water management, Model Predictive Control (MPC) has gained popularity owing to its versatility and flexibility. The MPC controller, which takes predictions, time delay and uncertainties into account, can be designed for multi-objective management problems and for large-scale systems. Nonetheless, a critical obstacle, which needs to be overcome in MPC, is the large computational burden when a large-scale system is considered or a long prediction horizon is involved. In order to solve this problem, we use an adaptive prediction accuracy (APA) approach that can reduce the computational burden almost by half. The proposed MPC scheme with this scheme is tested on the northern Dutch water system, which comprises Lake IJssel, Lake Marker, the River IJssel and the North Sea Canal. The simulation results show that by using the MPC-APA scheme, the computational time can be reduced to a large extent and a flood protection problem over longer prediction horizons can be well solved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report results on the optimal \choice of technique" in a model originally formulated by Robinson, Solow and Srinivasan (henceforth, the RSS model) and further discussed by Okishio and Stiglitz. By viewing this vintage-capital model without discounting as a speci c instance of the general theory of intertemporal resource allocation associated with Brock, Gale and McKenzie, we resolve longstanding conjectures in the form of theorems on the existence and price support of optimal paths, and of conditions suÆcient for the optimality of a policy rst identi ed by Stiglitz. We dispose of the necessity of these conditions in surprisingly simple examples of economies in which (i) an optimal path is periodic, (ii) a path following Stiglitz' policy is bad, and (iii) there is optimal investment in di erent vintages at di erent times. (129 words)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers challenges of Human Resource Management (HRM) in Open Innovation processes. It examines which strategies managers used to overcome these problems in the case of the Brazilian Oil and Gas company Petrobras. By conducting an inductive case study it develops a contextual model based on the use of grounded theory. It argues that the most important categories were to overcome problems of (a) the interpersonal relationship, (b) power shifting inside the organization, and (c) making people more valuable to the organization and shows how managers tackled these challenges. It contributes with a deep analysis of HRM challenges in Open Innovation that is important for a better understanding of management problems that can come along with Open Innovation processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single ownership of natural resources is conunon in many developing countries and socialist economies. The sole owner is usually the .state or society at large, and governments are responsible for either distributing exploitation rights or engaging in exploitation through their own corporations. • Under this circumstance, the notion of externality may not fully explain pollution problems existent in these nations. This paper studies the case where a single agent owns both exhaustible and renewable resources, and attempts to maximize its welfare. The resources are either perfect or imperfect substitutes. Initially, exhaustible resource extraction does not affect the renewable resource, and sustainable growth is attainable. A lactor of pollution flowing from the extraction of the nc.nrenewable resource into the growth of the renewable resource is introduced. The continuous exploitation of the exhaustible resource leads to the " optimal " extinction of the renewable resource, and sustainable growth is no longer reached. Regulation from a supra governmental agency such as an multinational institution may prove to be of utmost importance, if sustainability is to be achieved. The paper is divided into five sections. Section two provides a brief survey of the relevant literature. Section three presents the model without pollution. This factor is introduced in section four. The final section discusses some possible approaches for attaining sustainable growth, and contains the concluding remarks .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Externai debt service requires a dual resource transfer. Trade surpluses have to be generated in order to make foreign exchange revenues available for debt repayment. In addition, with developing countries' externai debt being largely a public liability, debt service requires that resources can be effectively transferred from the private to the public sector. This paper derives a statistical model for dealing with dual constraints in the presence of binary dependent variables and applies it to the dual resource transfer problem. The results from the estimation of the model for a sample of 31 middle-income developing countries in the period of 1980 to 1990, strongly support the hypothesis that both externai and fiscal constraints are important in explaining externai debt service disruptions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We characterize optimal policy in a two-sector growth model with xed coeÆcients and with no discounting. The model is a specialization to a single type of machine of a general vintage capital model originally formulated by Robinson, Solow and Srinivasan, and its simplicity is not mirrored in its rich dynamics, and which seem to have been missed in earlier work. Our results are obtained by viewing the model as a specific instance of the general theory of resource allocation as initiated originally by Ramsey and von Neumann and brought to completion by McKenzie. In addition to the more recent literature on chaotic dynamics, we relate our results to the older literature on optimal growth with one state variable: speci cally, to the one-sector setting of Ramsey, Cass and Koopmans, as well as to the two-sector setting of Srinivasan and Uzawa. The analysis is purely geometric, and from a methodological point of view, our work can be seen as an argument, at least in part, for the rehabilitation of geometric methods as an engine of analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta tese traz três exercícios empíricos sobre questões de recursos humanos em escolas públicas brasileiras, aproveitando-se de uma ampla política implantada na rede estadual de São Paulo. Esta política aumenta os salários para os professores que trabalham em escolas urbanas pobres e sua regra de alocação, baseada em um corte arbitrário em um índice socioeconômico, permite a identificação de impactos causais. Em resumo, os três artigos apontam que políticas de subsídios são capazes de, de fato, manter professores nas escolas mais pobres e este efeito, por sua vez, melhora o desempenho acadêmico dos alunos. Além disso, concluímos também que esta política também reduz o absenteísmo dos professores. No entanto, como consequência do desenho dessa política, não há evidências de que o subsídio melhora o perfil dos professores alocados nessas escolas. O primeiro artigo avalia os impactos dessa política sobre a rotatividade dos professores. Concluímos que a compensação salarial reduziu a taxa de rotatividade em 7,2 pontos percentuais, o que significa uma queda de 15% sobre a média pré-tratamento. Em um modelo em forma reduzida, encontramos também evidências de que esta política pode impactar positivamente o desempenho dos alunos. O segundo artigo analisa os impactos sobre a aprendizagem dos alunos, com foco em três possíveis mecanismos: i) a rotatividade; ii) a qualidade dos professores; iii) o aumento do salário. As estimativas mostram que o único canal através do qual esta política compensatória afeta o desempenho dos alunos é a redução da rotatividade dos professores. Ao reduzir taxa de volume de negócios em um desvio-padrão, a política reduziu a proporção de alunos de baixo desempenho em cerca de meio desvio-padrão. O terceiro artigo avalia como a diferenciação salarial criada por esta política afeta absenteísmo dos professores. Os resultados mostram que, após controlar efeitos fixos de professores e escolas, pagar um salário mais elevado (em média 26% a mais) provoca uma queda de 8-22% nas faltas dos professores. Ausências que não levam a desconto de salário, como por licenças médicas, não respondem à diferenciação salarial e o impacto é maior para os professores que recebem maior incentivo.