890 resultados para conditional random fields
Resumo:
In this study, we present a method designed to generate dynamic holograms in holographic optical tweezers. The approach combines our random mask encoding method with iterative high-efficiency algorithms. This hybrid method can be used to dynamically modify precalculated holograms, giving them new functionalities¿temporarily or permanently¿with a low computational cost. This allows the easy addition or removal of a single trap or the independent control of groups of traps for manipulating a variety of rigid structures in real time.
Resumo:
This document produced by the Iowa Department of Administrative Services has been developed to provide a multitude of information about executive branch agencies/department on a single sheet of paper. The facts provides general information, contact information, workforce data, leave and benefits information and affirmative action data.
Resumo:
Several ribbons of composition Fe73.5Cu1Nb 3Si16.5B6 and Fe73.5Cu1 Nb3Si13.5B9 were prepared by annealing the as-quenched samples between 525°C and 700°C; which induced nucleation of nanocrystallites of Fe bcc-type composition. Mean grain sizes were obtained from X-ray diffraction. Static magnetic properties were measured with both a Magnet Physik Hysteresis-Graph (up to 200 Oe) and a SHE SQUID magnetometer (up to 50 kOe). Soft magnetic parameters (coercive field and initial permeability) were very sensitive to grain size. The ZFC magnetization at low field showed a broad peak at a temperature TM, thus signalling a certain distribution of nanocrystalline sizes, and TM strongly decreased when the mean grain size decreased. Isothermal magnetization curves at low temperature showed the expected asymptotic behavior of a random magnet material at low and high fields.
Resumo:
The issue of de Sitter invariance for a massless minimally coupled scalar field is examined. Formally, it is possible to construct a de Sitterinvariant state for this case provided that the zero mode of the field is quantized properly. Here we take the point of view that this state is physically acceptable, in the sense that physical observables can be computed and have a reasonable interpretation. In particular, we use this vacuum to derive a new result: that the squared difference between the field at two points along a geodesic observers spacetime path grows linearly with the observers proper time for a quantum state that does not break de Sitter invariance. Also, we use the Hadamard formalism to compute the renormalized expectation value of the energy-momentum tensor, both in the O(4)-invariant states introduced by Allen and Follaci, and in the de Sitterinvariant vacuum. We find that the vacuum energy density in the O(4)-invariant case is larger than in the de Sitterinvariant case.
Resumo:
We study the Brownian motion in velocity-dependent fields of force. Our main result is a Smoluchowski equation valid for moderate to high damping constants. We derive that equation by perturbative solution of the Langevin equation and using functional derivative techniques.
Resumo:
We propose a simple geometrical prescription for coupling a test quantum scalar field to an "inflaton" (classical scalar field) in the presence of gravity. When the inflaton stems from the compactification of a Kaluza-Klein theory, the prescription leaves no arbitrariness and amounts to a dimensional reduction of the Klein-Gordon equation. We discuss the possible relevance of this coupling to "reheating" in inflationary cosmologies.
Resumo:
We present a new class of sequential adsorption models in which the adsorbing particles reach the surface following an inclined direction (shadow models). Capillary electrophoresis, adsorption in the presence of a shear, and adsorption on an inclined substrate are physical manifestations of these models. Numerical simulations are carried out to show how the new adsorption mechanisms are responsible for the formation of more ordered adsorbed layers and have important implications in the kinetics, in particular, modifying the jamming limit.
Resumo:
A new solvable model of synchronization dynamics is introduced. It consists of a system of long range interacting tops or magnetic moments with random precession frequencies. The model allows for an explicit study of orientational effects in synchronization phenomena as well as nonlinear processes in resonance phenomena in strongly coupled magnetic systems. A stability analysis of the incoherent solution is performed for different types of orientational disorder. A system with orientational disorder always synchronizes in the absence of noise.
Resumo:
(2+1)-dimensional anti-de Sitter (AdS) gravity is quantized in the presence of an external scalar field. We find that the coupling between the scalar field and gravity is equivalently described by a perturbed conformal field theory at the boundary of AdS3. This allows us to perform a microscopic computation of the transition rates between black hole states due to absorption and induced emission of the scalar field. Detailed thermodynamic balance then yields Hawking radiation as spontaneous emission, and we find agreement with the semiclassical result, including greybody factors. This result also has application to four and five-dimensional black holes in supergravity.
Resumo:
We develop a general theory for percolation in directed random networks with arbitrary two-point correlations and bidirectional edgesthat is, edges pointing in both directions simultaneously. These two ingredients alter the previously known scenario and open new views and perspectives on percolation phenomena. Equations for the percolation threshold and the sizes of the giant components are derived in the most general case. We also present simulation results for a particular example of uncorrelated network with bidirectional edges confirming the theoretical predictions.
Resumo:
We apply the formalism of the continuous-time random walk to the study of financial data. The entire distribution of prices can be obtained once two auxiliary densities are known. These are the probability densities for the pausing time between successive jumps and the corresponding probability density for the magnitude of a jump. We have applied the formalism to data on the U.S. dollardeutsche mark future exchange, finding good agreement between theory and the observed data.
Resumo:
We present a generator of random networks where both the degree-dependent clustering coefficient and the degree distribution are tunable. Following the same philosophy as in the configuration model, the degree distribution and the clustering coefficient for each class of nodes of degree k are fixed ad hoc and a priori. The algorithm generates corresponding topologies by applying first a closure of triangles and second the classical closure of remaining free stubs. The procedure unveils an universal relation among clustering and degree-degree correlations for all networks, where the level of assortativity establishes an upper limit to the level of clustering. Maximum assortativity ensures no restriction on the decay of the clustering coefficient whereas disassortativity sets a stronger constraint on its behavior. Correlation measures in real networks are seen to observe this structural bound.
Resumo:
We consider an infinite number of noninteracting lattice random walkers with the goal of determining statistical properties of the time, out of a total time T, that a single site has been occupied by n random walkers. Initially the random walkers are assumed uniformly distributed on the lattice except for the target site at the origin, which is unoccupied. The random-walk model is taken to be a continuous-time random walk and the pausing-time density at the target site is allowed to differ from the pausing-time density at other sites. We calculate the dependence of the mean time of occupancy by n random walkers as a function of n and the observation time T. We also find the variance for the cumulative time during which the site is unoccupied. The large-T behavior of the variance differs according as the random walk is transient or recurrent. It is shown that the variance is proportional to T at large T in three or more dimensions, it is proportional to T3/2 in one dimension and to TlnT in two dimensions.