917 resultados para citrate potassium
Resumo:
We describe a 61-year-old patient with clinical evidence of limbic encephalitis who improved with anticonvulsant treatment only, that is, without the use of immunosuppressive agents. Three years following occurrence of anosmia, increasing memory deficits, and emotional disturbances, he presented with new-onset temporal lobe epilepsy, with antibodies binding to neuronal voltage-gated potassium channels and bitemporal hypometabolism on FDG-PET scan; the MRI scan was normal. This is most likely a case of spontaneous remission, illustrating that immunosuppressive therapy might be suspended in milder courses of limbic encephalitis. It remains open whether treatment with anticonvulsant drugs played an additional beneficiary role through the direct suppression of seizures or, additionally, through indirect immunomodulatory side effects.
Resumo:
Regional citrate anticoagulation (RCA) during hemodialysis (HD) has several advantages over heparin anticoagulation, but calcium (Ca) derangements are a major concern necessitating repeated monitoring of systemic ionized Ca (Ca(2+)). We developed a mathematical model of Ca and citrate (Ci) kinetics during RCA.
Resumo:
Episodic ataxia type 1 is a neuronal channelopathy caused by mutations in the KCNA1 gene encoding the fast K(+) channel subunit K(v)1.1. Episodic ataxia type 1 presents with brief episodes of cerebellar dysfunction and persistent neuromyotonia and is associated with an increased incidence of epilepsy. In myelinated peripheral nerve, K(v)1.1 is highly expressed in the juxtaparanodal axon, where potassium channels limit the depolarizing afterpotential and the effects of depolarizing currents. Axonal excitability studies were performed on patients with genetically confirmed episodic ataxia type 1 to characterize the effects of K(v)1.1 dysfunction on motor axons in vivo. The median nerve was stimulated at the wrist and compound muscle action potentials were recorded from abductor pollicis brevis. Threshold tracking techniques were used to record strength-duration time constant, threshold electrotonus, current/threshold relationship and the recovery cycle. Recordings from 20 patients from eight kindreds with different KCNA1 point mutations were compared with those from 30 normal controls. All 20 patients had a history of episodic ataxia and 19 had neuromyotonia. All patients had similar, distinctive abnormalities: superexcitability was on average 100% higher in the patients than in controls (P < 0.00001) and, in threshold electrotonus, the increase in excitability due to a depolarizing current (20% of threshold) was 31% higher (P < 0.00001). Using these two parameters, the patients with episodic ataxia type 1 and controls could be clearly separated into two non-overlapping groups. Differences between the different KCNA1 mutations were not statistically significant. Studies of nerve excitability can identify K(v)1.1 dysfunction in patients with episodic ataxia type 1. The simple 15 min test may be useful in diagnosis, since it can differentiate patients with episodic ataxia type 1 from normal controls with high sensitivity and specificity.
Deubiquitylating enzyme USP2 counteracts Nedd4-2-mediated downregulation of KCNQ1 potassium channels
Resumo:
KCNQ1 (Kv7.1), together with its KCNE β subunits, plays a pivotal role both in the repolarization of cardiac tissue and in water and salt transport across epithelial membranes. Nedd4/Nedd4-like (neuronal precursor cell-expressed developmentally downregulated 4) ubiquitin-protein ligases interact with the KCNQ1 potassium channel through a PY motif located in the C terminus of KCNQ1. This interaction induces ubiquitylation of KCNQ1, resulting in a reduced surface density of the channel. It was reported recently that the epithelial sodium channel is regulated by the reverse process-deubiquitylation-mediated by USP2 (ubiquitin-specific protease 2).
Resumo:
The voltage-gated cardiac potassium channel hERG1 (human ether-à-gogo-related gene 1) plays a key role in the repolarization phase of the cardiac action potential (AP). Mutations in its gene, KCNH2, can lead to defects in the biosynthesis and maturation of the channel, resulting in congenital long QT syndrome (LQTS). To identify the molecular mechanisms regulating the density of hERG1 channels at the plasma membrane, we investigated channel ubiquitylation by ubiquitin ligase Nedd4-2, a post-translational regulatory mechanism previously linked to other ion channels. We found that whole-cell hERG1 currents recorded in HEK293 cells were decreased upon neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2) co-expression. The amount of hERG1 channels in total HEK293 lysates and at the cell surface, as assessed by Western blot and biotinylation assays, respectively, were concomitantly decreased. Nedd4-2 and hERG1 interact via a PY motif located in the C-terminus of hERG1. Finally, we determined that Nedd4-2 mediates ubiquitylation of hERG1 and that deletion of this motif affects Nedd4-2-dependent regulation. These results suggest that ubiquitylation of the hERG1 protein by Nedd4-2, and its subsequent down-regulation, could represent an important mechanism for modulation of the duration of the human cardiac action potential.
Resumo:
A growing number of drugs have been shown to prolong cardiac repolarization, predisposing individuals to life-threatening ventricular arrhythmias known as Torsades de Pointes. Most of these drugs are known to interfere with the human ether à-gogo related gene 1 (hERG1) channel, whose current is one of the main determinants of action potential duration. Prolonged repolarization is reflected by lengthening of the QT interval of the electrocardiogram, as seen in the suitably named drug-induced long QT syndrome. Chirality (presence of an asymmetric atom) is a common feature of marketed drugs, which can therefore exist in at least two enantiomers with distinct three-dimensional structures and possibly distinct biological fates. Both the pharmacokinetic and pharmacodynamic properties can differ between enantiomers, as well as also between individuals who take the drug due to metabolic polymorphisms. Despite the large number of reports about drugs reducing the hERG1 current, potential stereoselective contributions have only been scarcely investigated. In this review, we present a non-exhaustive list of clinically important molecules which display chiral toxicity that may be related to hERG1-blocking properties. We particularly focus on methadone cardiotoxicity, which illustrates the importance of the stereoselective effect of drug chirality as well as individual variations resulting from pharmacogenetics. Furthermore, it seems likely that, during drug development, consideration of chirality in lead optimization and systematic assessment of the hERG1 current block with all enantiomers could contribute to the reduction of the risk of drug-induced LQTS.
Resumo:
Potassium-enriched diets exert renal and cardiovascular protective effects, but the underlying mechanisms are largely unknown.
Resumo:
The Krebs cycle is of fundamental importance for the generation of the energetic and molecular needs of both prokaryotic and eukaryotic cells. Both enantiomers of metabolite 2-hydroxyglutarate are directly linked to this pivotal biochemical pathway and are found elevated not only in several cancers, but also in different variants of the neurometabolic disease 2-hydroxyglutaric aciduria. Recently we showed that cancer-associated IDH2 germline mutations cause one variant of 2-hydroxyglutaric aciduria. Complementary to these findings, we now report recessive mutations in SLC25A1, the mitochondrial citrate carrier, in 12 out of 12 individuals with combined D-2- and L-2-hydroxyglutaric aciduria. Impaired mitochondrial citrate efflux, demonstrated by stable isotope labeling experiments and the absence of SLC25A1 in fibroblasts harboring certain mutations, suggest that SLC25A1 deficiency is pathogenic. Our results identify defects in SLC25A1 as a cause of combined D-2- and L-2-hydroxyglutaric aciduria.
Resumo:
Hemodynamic effects related to changes in serum ionized calcium (iCa) are difficult to determine during conventional hemodialysis (HD) using a fixed dialysate concentration of calcium. Regional citrate anticoagulation (RCA) allows the study of the effects of predefined iCa changes on arterial stiffness and blood pressure (BP) during a single dialysis session. In a crossover study, 15 patients with end-stage renal disease underwent two HD sessions with RCA. Each session was divided into two study phases in which iCa was titrated either to 0.8-1.0 mm or to 1.1-1.4 mm. The sequence of phases was randomly chosen and alternated for the second session. After reaching a stable iCa level, pulse wave velocity (PWV), arterial BP, and heart rate were measured. iCa levels were modified during sequence 1 (iCa low-high) from a predialysis baseline value of 1.15 ± 0.09 mm, first to 0.92 ± 0.05 mm (time point 1; P < 0.001 vs. baseline) and then to 1.18 ± 0.05 (time point 2; ns). During sequence 2 (iCa high-low), iCa levels were modified from 1.15 ± 0.12 mm first to 1.20 ± 0.05 mm (time point 1; ns vs. baseline) and then to 0.93 ± 0.03 (time point 2; P < 0.001). Assuming a basic linear repeated measures model, PWV was positively related to iCa levels (P < 0.03) independent of systolic or diastolic BP, heart rate, or ultrafiltration rate. PWV is closely related to acute changes in serum iCa levels in HD patients using RCA. RCA provides an interesting opportunity to study the effects of acute iCa changes during one dialysis procedure.
Resumo:
Potassium is a major plant nutrient which has to be accumulated in great quantity by roots and distributed throughout the plant and within plant cells. Membrane transport of potassium can be mediated by potassium channels and secondary potassium transporters. Plant potassium transporters are present in three families of membrane proteins: the K(+) uptake permeases (KT/HAK/KUP), the K(+) transporter (Trk/HKT) family and the cation proton antiporters (CPA). This review will discuss the contribution of members of each family to potassium acquisition, redistribution and homeostasis.
Resumo:
OBJECT: Disturbed ionic and neurotransmitter homeostasis are now recognized as probably the most important mechanisms contributing to the development of secondary brain swelling after traumatic brain injury (TBI). Evidence obtained in animal models indicates that posttraumatic neuronal excitation by excitatory amino acids leads to an increase in extracellular potassium, probably due to ion channel activation. The purpose of this study was therefore to measure dialysate potassium in severely head injured patients and to correlate these results with measurements of intracranial pressure (ICP), patient outcome, and levels of dialysate glutamate and lactate, and cerebral blood flow (CBF) to determine the role of ischemia in this posttraumatic ion dysfunction. METHODS: Eighty-five patients with severe TBI (Glasgow Coma Scale Score < 8) were treated according to an intensive ICP management-focused protocol. All patients underwent intracerebral microdialyis. Dialysate potassium levels were analyzed using flame photometry, and dialysate glutamate and dialysate lactate levels were measured using high-performance liquid chromatography and an enzyme-linked amperometric method in 72 and 84 patients, respectively. Cerebral blood flow studies (stable xenon computerized tomography scanning) were performed in 59 patients. In approximately 20% of the patients, dialysate potassium values were increased (dialysate potassium > 1.8 mM) for 3 hours or more. A mean amount of dialysate potassium greater than 2 mM throughout the entire monitoring period was associated with ICP above 30 mm Hg and fatal outcome, as were progressively rising levels of dialysate potassium. The presence of dialysate potassium correlated positively with dialysate glutamate (p < 0.0001) and lactate (p < 0.0001) levels. Dialysate potassium was significantly inversely correlated with reduced CBF (p = 0.019). CONCLUSIONS: Dialysate potassium was increased after TBI in 20% of measurements. High levels of dialysate potassium were associated with increased ICP and poor outcome. The simultaneous increase in dialysate potassium, together with dialysate glutamate and lactate, supports the concept that glutamate induces ionic flux and consequently increases ICP, which the authors speculate may be due to astrocytic swelling. Reduced CBF was also significantly correlated with increased levels of dialysate potassium. This may be due to either cell swelling or altered vasoreactivity in cerebral blood vessels caused by higher levels of potassium after trauma. Additional studies in which potassium-sensitive microelectrodes are used are needed to validate these ionic events more clearly.
Resumo:
Disturbed ionic and neurotransmitter homeostasis are now recognized to be probably the most important mechanisms contributing to the development of secondary brain swelling after traumatic brian injury (TBI). Evidence obtained from animal models indicates that posttraumatic neuronal excitation via excitatory amino acids leads to an increase in extracellular potassium, probably due to ion channel activation. The purpose of this study was therefore to measure dialysate potassium in severely head injured patients and to correlate these results with intracranial pressure (ICP), outcome, and also with the levels of dialysate glutamate, lactate, and cerebral blood flow (CBF) so as to determine the role of ischemia in this posttraumatic ionic dysfunction. Eighty-five patients with severe TBI (Glasgow Coma Scale score < 8) were treated according to an intensive ICP management-focused protocol. All patients underwent intracerebral microdialyis. Dialysate potassium levels were analyzed by flame photometry, as were dialysate glutamate and dialysate lactate levels, which were measured using high-performance liquid chromatography and an enzyme-linked amperometric method in 72 and 84 patients respectively. Cerebral blood flow studies (stable Xenon--computerized tomography scanning) were performed in 59 patients. In approximately 20% of the patients, potassium values were increased (dialysate potassium > 1.8 mmol). Mean dialysate potassium (> 2 mmol) was associated with ICP above 30 mm Hg and fatal outcome. Dialysate potassium correlated positively with dialysate glutamate (p < 0.0001) and lactate levels (p < 0.0001). Dialysate potassium was significantly inversely correlated with reduced CBF (p = 0.019). Dialysate potassium was increased after TBI in 20% of measurements. High levels of dialysate potassium were associated with increased ICP and poor outcome. The simultaneous increase of potassium, together with dialysate glutamate and lactate, supports the hypothesis that glutamate induces ionic flux and consequently increases ICP due to astrocytic swelling. Reduced CBF was also significantly correlated with increased levels of dialysate potassium. This may be due to either cell swelling or altered potassium reactivity in cerebral blood vessels after trauma.
Resumo:
The key role players of brain swelling seen after severe human head injury have only been partly determined. We used our human head injury data base to determine relationships between potassium, glutamate, lactate and cerebral blood flow (CBF). A total of 70 severely head injured patients (GCS < or = 8) were studied using intracerebral microdialysis to measure extracellular glutamate, potassium and lactate. Xenon CT was used to determine regional cerebral blood flow (rCBF). The mean +/- SEM of the r value of all patients, between potassium and glutamate, and potassium and lactate was 0.25 +/- 0.04 (p < 0.0001) and 0.17 +/- 0.06 (p = 0.006), respectively, demonstrating in both cases a positive relationship. rCBF was negatively correlated with potassium with marginal significance (r = -0.35, p = 0.08). When separated into two groups, patients with contusion had higher potassium levels than patients without contusion (1.55 +/- 0.03 mmol/l versus 1.26 +/- 0.02 mmol/l, respectively). These results in severely head injured patients confirm previous in vitro and animal studies in which relationships between potassium, glutamate, lactate and CBF were found. Potassium efflux is a major determinant of cell swelling leading to clinically significant cytotoxic edema due to increased glutamate release during reduced cerebral blood flow.
Resumo:
BACKGROUND: Taurolidin/Citrate (TauroLock), a lock solution with broad spectrum antimicrobial activity, may prevent bloodstream infection (BSI) due to coagulase-negative staphylococci (CoNS or 'MRSE' in case of methicillin-resistant isolates) in pediatric cancer patients with a long term central venous access device (CVAD, Port- or/Broviac-/Hickman-catheter type). METHODS: In a single center prospective 48-months cohort study we compared all patients receiving anticancer chemotherapy from April 2003 to March 2005 (group 1, heparin lock with 200 IU/ml sterile normal saline 0.9%; Canusal Wockhardt UK Ltd, Wrexham, Wales) and all patients from April 2005 to March 2007 (group 2; taurolidine 1.35%/Sodium Citrate 4%; TauroLock, Tauropharm, Waldbüttelbrunn, Germany). RESULTS: In group 1 (heparin), 90 patients had 98 CVAD in use during the surveillance period. 14 of 30 (47%) BSI were 'primary Gram positive BSI due to CoNS (n = 4) or MRSE (n = 10)' [incidence density (ID); 2.30 per 1000 inpatient CVAD-utilization days].In group 2 (TauroLock), 89 patients had 95 CVAD in use during the surveillance period. 3 of 25 (12%) BSI were caused by CoNS. (ID, 0.45). The difference in the ID between the two groups was statistically significant (P = 0.004). CONCLUSION: The use of Taurolidin/Citrate (TauroLock) significantly reduced the number and incidence density of primary catheter-associated BSI due to CoNS and MRSE in pediatric cancer patients.