960 resultados para charge transfer complexes
Resumo:
We observe the weak S 0 → S 2 transitions of the T-shaped benzene dimers (Bz)2 and (Bz-d 6)2 about 250 cm−1 and 220 cm−1 above their respective S 0 → S 1 electronic origins using two-color resonant two-photon ionization spectroscopy. Spin-component scaled (SCS) second-order approximate coupled-cluster (CC2) calculations predict that for the tipped T-shaped geometry, the S 0 → S 2 electronic oscillator strength f el (S 2) is ∼10 times smaller than f el (S 1) and the S 2 state lies ∼240 cm−1 above S 1, in excellent agreement with experiment. The S 0 → S 1 (ππ ∗) transition is mainly localized on the “stem” benzene, with a minor stem → cap charge-transfer contribution; the S 0 → S 2 transition is mainly localized on the “cap” benzene. The orbitals, electronic oscillator strengths f el (S 1) and f el (S 2), and transition frequencies depend strongly on the tipping angle ω between the two Bz moieties. The SCS-CC2 calculated S 1 and S 2 excitation energies at different T-shaped, stacked-parallel and parallel-displaced stationary points of the (Bz)2 ground-state surface allow to construct approximate S 1 and S 2 potential energy surfaces and reveal their relation to the “excimer” states at the stacked-parallel geometry. The f el (S 1) and f el (S 2) transition dipole moments at the C 2v -symmetric T-shape, parallel-displaced and stacked-parallel geometries are either zero or ∼10 times smaller than at the tipped T-shaped geometry. This unusual property of the S 0 → S 1 and S 0 → S 2 transition-dipole moment surfaces of (Bz)2 restricts its observation by electronic spectroscopy to the tipped and tilted T-shaped geometries; the other ground-state geometries are impossible or extremely difficult to observe. The S 0 → S 1/S 2 spectra of (Bz)2 are compared to those of imidazole ⋅ (Bz)2, which has a rigid triangular structure with a tilted (Bz)2 subunit. The S 0 → S 1/ S 2 transitions of imidazole-(benzene)2 lie at similar energies as those of (Bz)2, confirming our assignment of the (Bz)2 S 0 → S 2 transition.
Resumo:
Bacterial photosynthesis relies on the interplay between light harvesting and electron transfer complexes, all of which are located within the intracytoplasmic membrane. These complexes capture and transfer solar energy, which is used to generate a proton gradient. In this study, we identify one of the factors that determines the organization of these complexes. We undertook a comparison of the organization of the light-harvesting complex 1 (LH1)/reaction center (RC) cores in the LH2− mutant of Rhodobacter sphaeroides in the presence or absence of the PufX protein. From polarized absorption spectra on oriented membranes, we conclude that PufX induces a specific orientation of the reaction center in the LH1 ring, as well as the formation of a long-range regular array of LH1-RC cores in the photosynthetic membrane. From our data, we have constructed a precise model of how the RC is positioned within the LH1 ring relative to the long (orientation) axis of the photosynthetic membrane.
Resumo:
Electrochemical methods have been widely used to monitor physiologically important molecules in biological systems. This report describes the first application of the scanning electrochemical microscope (SECM) to probe the redox activity of individual living cells. The possibilities of measuring the rate and investigating the pathway of transmembrane charge transfer are demonstrated. By this approach, significant differences are detected in the redox responses given by nonmotile, nontransformed human breast epithelial cells, breast cells with a high level of motility (engendered by overexpression of protein kinase Cα), and highly metastatic breast cancer cells. SECM analysis of the three cell lines reveals reproducible differences with respect to the kinetics of charge transfer by several redox mediators.
Insulin promotes rapid delivery of N-methyl-d- aspartate receptors to the cell surface by exocytosis
Resumo:
Insulin potentiates N-methyl-d-aspartate receptors (NMDARs) in neurons and Xenopus oocytes expressing recombinant NMDARs. The present study shows that insulin induced (i) an increase in channel number times open probability (nPo) in outside-out patches excised from Xenopus oocytes, with no change in mean open time, unitary conductance, or reversal potential, indicating an increase in n and/or Po; (ii) an increase in charge transfer during block of NMDA-elicited currents by the open channel blocker MK-801, indicating increased number of functional NMDARs in the cell membrane with no change in Po; and (iii) increased NR1 surface expression, as indicated by Western blot analysis of surface proteins. Botulinum neurotoxin A greatly reduced insulin potentiation, indicating that insertion of new receptors occurs via SNARE-dependent exocytosis. Thus, insulin potentiation occurs via delivery of new channels to the plasma membrane. NMDARs assembled from mutant subunits lacking all known sites of tyrosine and serine/threonine phosphorylation in their carboxyl-terminal tails exhibited robust insulin potentiation, suggesting that insulin potentiation does not require direct phosphorylation of NMDAR subunits. Because insulin and insulin receptors are localized to glutamatergic synapses in the hippocampus, insulin-regulated trafficking of NMDARs may play a role in synaptic transmission and plasticity, including long-term potentiation.
Resumo:
The electronic structure and spectrum of several models of the binuclear metal site in soluble CuA domains of cytochrome-c oxidase have been calculated by the use of an extended version of the complete neglect of differential overlap/spectroscopic method. The experimental spectra have two strong transitions of nearly equal intensity around 500 nm and a near-IR transition close to 800 nm. The model that best reproduces these features consists of a dimer of two blue (type 1) copper centers, in which each Cu atom replaces the missing imidazole on the other Cu atom. Thus, both Cu atoms have one cysteine sulfur atom and one imidazole nitrogen atom as ligands, and there are no bridging ligands but a direct Cu-Cu bond. According to the calculations, the two strong bands in the visible region originate from exciton coupling of the dipoles of the two copper monomers, and the near-IR band is a charge-transfer transition between the two Cu atoms. The known amino acid sequence has been used to construct a molecular model of the CuA site by the use of a template and energy minimization. In this model, the two ligand cysteine residues are in one turn of an alpha-helix, whereas one ligand histidine is in a loop following this helix and the other one is in a beta-strand.
Resumo:
Entre os inibidores de corrosão clássicos que já são utilizados na indústria do petróleo, foram estudadas a imidazolina oleica e a quaternária através de técnicas eletroquímicas, gravimétrica e analíticas, para avaliar a eficiência de inibição e como esses inibidores atuam em meio ácido. O meio agressivo foi uma solução de NaCl 3,5% em massa acidificada com ácido clorídrico até atingir um pH=2 com o objetivo de simular o ambiente de extração petrolífera. O substrato empregado foi o aço carbono 1020. As técnicas eletroquímicas utilizadas foram: monitoramento do potencial de circuito aberto, medidas de resistência de polarização linear, espectroscopia de impedância eletroquímica (EIE ) e curvas de polarização. Os valores das componentes real e imaginária de impedância indicam uma resistência maior aos processos de transferência de carga com o aumento da concentração dos inibidores e os Diagramas de Bode de ângulo de fase, revelaram a presença de uma camada de inibidor adsorvida sobre o metal com uma constante de tempo em altas frequências observada para a imidazolina oleica e quaternária. Para a imidazolina quaternária, verificou-se que só para tempos maiores de imersão é que o filme se adsorve de forma eficiente demonstrando uma cinética mais lenta de adsorção. Nos ensaios gravimétricos, os resultados de taxa de corrosão em m/ano foram decrescentes com o tempo após período de imersão de 30 dias, para ambas as imidazolinas. O uso das técnicas analíticas foi necessário a fim de se compreender melhor o comportamento das imidazolinas sobre o aço no meio estudado. Os resultados da análise de íons férricos em solução, por emissão atômica, foram obtidos durante várias amostragens durante o período do ensaio de perda de massa, e foi possível verificar um processo de inibição da corrosão até doze dias de imersão do metal, depois disto ocorre um disparo na quantidade de ferro liberado em solução, sugerindo que pode estar ocorrendo uma degradação do inibidor após 12 dias de imersão. Para esclarecer esse ponto, análises por espectroscopia Raman dos produtos de fundo formados durante os ensaios de perda de massa indicaramm que a degradação pode realmente estar ocorrendo. Foi confirmado, também por espectroscopia Raman sobre a superfície do aço após imersão prévia em solução contendo a imidazolina oleica, que há uma película adsorvida que protege o metal do meio agressivo. Técnica de microscopia eletrônica de varredura foi utilizada para caracterizar os corpos de prova na ausência e presença do inibidor, depois dos ensaios eletroquímicos e foi possível caracterizar, através dessa técnica a maior eficiência inibidora do filme de imidazolina quaternária. Dois tipos de nanoconatiners foram avaliados para o encapsulamento das duas imidazolinas estudadas: nanocontainers a base do argilomineral haloiista e sílica mesoporosa tipo SBA 15. Resultados de impedância eletroquímica mostraram a liberação dos inibidores de corrosão encapsulados com o tempo de imersão. Análise na região do infravermelho por sonda de fibra ótica foi utilizada para comprovar química e qualitativamente a liberação do inibidor a partir dos nanorreservatórios, no meio agressivo.
Resumo:
A systematic study on the influence of carbon on the signal of a large number of hard-to-ionize elements (i.e. B, Be, P, S, Zn, As, Se, Pd, Cd, Sb, I, Te, Os, Ir, Pt, Au, and Hg) in inductively coupled plasma–mass spectrometry has been carried out. To this end, carbon matrix effects have been evaluated considering different plasma parameters (i.e. nebulizer gas flow rate, r.f. power and sample uptake rate), sample introduction systems, concentration and type of carbon matrix (i.e. glycerol, citric acid, potassium citrate and ammonium carbonate) and type of mass spectrometer (i.e. quadrupole filter vs. double-focusing sector field mass spectrometer). Experimental results show that P, As, Se, Sb, Te, I, Au and Hg sensitivities are always higher for carbon-containing solutions than those obtained without carbon. The other hard-to-ionize elements (Be, B, S, Zn, Pd, Cd, Os, Ir and Pt) show no matrix effect, signal enhancement or signal suppression depending on the experimental conditions selected. The matrix effects caused by the presence of carbon are explained by changes in the plasma characteristics and the corresponding changes in ion distribution in the plasma (as reflected in the signal behavior plot, i.e. the signal intensity as a function of the nebulizer gas flow rate). However, the matrix effects for P, As, Se, Sb, Te, I, Au and Hg are also related to an increase in analyte ion population caused as a result of charge transfer reactions involving carbon-containing charged species in the plasma. The predominant specie is C+, but other species such as CO+, CO2+, C2+ and ArC+ could also play a role. Theoretical data suggest that B, Be, S, Pd, Cd, Os, Ir and Pt could also be involved in carbon based charge transfer reactions, but no experimental evidence substantiating this view has been found.
Resumo:
The hybrid structure of Fe2O3 nanoparticles/TiO2 nanofibers (NFs), combines the merits of large surface areas of TiO2 NFs and absorption in ultraviolet light–visible light range. This structure can be used for many applications such as photoelectrochemical water splitting and photo-catalysis. Here, a sol-flame method is used for depositing Fe2O3 on TiO2 NFs that were prepared by hydrothermal on Ti sheets. The obtained materials were characterized by XRD, SEM, UV/Vis diffuse reflectance, Raman, and XPS. The results revealed the formation of rutile and anatase crystalline phases together with Fe2O3. This process moves the absorption threshold of TiO2 NFs support into visible spectrum range and enhances the photocurrent in comparison to bare TiO2 NFs, although no hole scavenger was used. The impedance measurement at low and high frequencies revealed an increase in series resistance and a decrease in resistance of charge transfer with sol-flame treatment time. A mechanism for explaining the charge transfer in these TiO2 NFs decorated with Fe2O3 nanoparticles was proposed.
Resumo:
Results of a systematic study concerning non-spectral interferences from sulfuric acid containing matrices on a large number of elements in inductively coupled plasma–mass spectrometry (ICP-MS) are presented in this work. The signals obtained with sulfuric acid solutions of different concentrations (up to 5% w w− 1) have been compared with the corresponding signals for a 1% w w− 1− nitric acid solution at different experimental conditions (i.e., sample uptake rates, nebulizer gas flows and r.f. powers). The signals observed for 128Te+, 78Se+ and 75As+ were significantly higher when using sulfuric acid matrices (up to 2.2-fold for 128Te+ and 78Se+ and 1.8-fold for 75As+ in the presence of 5 w w-1 sulfuric acid) for the whole range of experimental conditions tested. This is in agreement with previously reported observations. The signal for 31P+ is also higher (1.1-fold) in the presence of sulfuric acid. The signal enhancements for 128Te+, 78Se+, 75As+ and 31P+ are explained in relation to an increase in the analyte ion population as a result of charge transfer reactions involving S+ species in the plasma. Theoretical data suggest that Os, Sb, Pt, Ir, Zn and Hg could also be involved in sulfur-based charge transfer reactions, but no experimental evidence has been found. The presence of sulfuric acid gives rise to lower ion signals (about 10–20% lower) for the other nuclides tested, thus indicating the negative matrix effect caused by changes in the amount of analyte loading of the plasma. The elemental composition of a certified low-density polyethylene sample (ERM-EC681K) was determined by ICP-MS after two different sample digestion procedures, one of them including sulfuric acid. Element concentrations were in agreement with the certified values, irrespective of the acids used for the digestion. These results demonstrate that the use of matrix-matched standards allows the accurate determination of the tested elements in a sulfuric acid matrix.
Resumo:
A novel and selective electrochemical functionalization of a highly reactive superporous zeolite templated carbon (ZTC) with two different aminobenzene acids (2-aminobenzoic and 4-aminobenzoic acid) was achieved. The functionalization was done through potentiodynamic treatment in acid media under oxidative conditions, which were optimized to preserve the unique ZTC structure. Interestingly, it was possible to avoid the electrochemical oxidation of the highly reactive ZTC structure by controlling the potential limit of the potentiodynamic experiment in presence of aminobenzene acids. The electrochemical characterization demonstrated the formation of polymer chains along with covalently bonded functionalities to the ZTC surface. The functionalized ZTCs showed several redox processes, producing a capacitance increase in both basic and acid media. The rate performance showed that the capacitance increase is retained at scan rates as high as 100 mV s−1, indicating that there is a fast charge transfer between the polymer chains formed inside the ZTC porosity or the new surface functionalities and the ZTC itself. The success of the proposed approach was also confirmed by using other characterization techniques, which confirmed the presence of different nitrogen groups in the ZTC surface. This promising method could be used to achieve highly selective functionalization of highly porous carbon materials.
Resumo:
We address in this paper a voltammetric study of the charge transfer processes characteristic of Pt(1 0 0) and vicinal surfaces in alkaline media. The electrochemical behavior of a series of stepped surfaces of the type Pt(S)[n(1 0 0) × (1 1 1)] has been characterized using cyclic voltammetry at different pHs, charge displacement measurements and FTIR experiments for adsorbed CO. The results from these techniques allow assigning the different peaks appearing in the voltammogram to hydrogen and/or OH adsorption on the different sites of these surfaces, namely, terrace and step sites. Additionally, the potential of zero total charge (pztc) of the electrodes was determined. The resulting pztc values shift to more negative values when the step density increases on the surface up to n = 5. FTIR spectroscopy experiments have been used to monitor the adsorption of CO on the different surfaces as well as the consequent CO oxidation, accompanying a positive potential sweep. The oxidation of adsorbed CO on (1 0 0) terraces is catalyzed by the presence of the (1 1 1) steps. The FTIR spectra revealed that CO is mostly bonded in bridge configuration at low potentials interconverting to on-top when the electrode potential is increased.
Resumo:
Currently, one of the most attractive and desirable ways to solve the energy challenge is harvesting energy directly from the sunlight through the so-called artificial photosynthesis. Among the ternary oxides based on earth–abundant metals, bismuth vanadate has recently emerged as a promising photoanode. Herein, BiVO4 thin film photoanodes have been successfully synthesized by a modified metal-organic precursor decomposition method, followed by an annealing treatment. In an attempt to improve the photocatalytic properties of this semiconductor material for photoelectrochemical water oxidation, the electrodes have been modified (i) by doping with La and Ce (by modifying the composition of the BiVO4 precursor solution with the desired concentration of the doping element), and (ii) by surface modification with Au nanoparticles potentiostatically electrodeposited. La and Ce doping at concentrations of 1 and 2 at% in the BiVO4 precursor solution, respectively, enhances significantly the photoelectrocatalytic performance of BiVO4 without introducing important changes in either the material structure or the electrode morphology, according to XRD and SEM characterization. In addition, surface modification of the electrodes with Au nanoparticles further enhances the photocurrent as such metallic nanoparticles act as co-catalysts, promoting charge transfer at the semiconductor/solution interface. The combination of these two complementary ways of modifying the electrodes has resulted in a significant increase in the photoresponse, facilitating their potential application in artificial photosynthesis devices.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Ab initio density functional theory (DFT) calculations are performed to explore possible catalytic effects on the dissociative chemisorption of hydrogen on a Mg(0001) surface when carbon is incorporated into Mg materials. The computational results imply that a C atom located initially on a Mg(0001) surface can migrate into the subsurface and occupy an fcc interstitial site, with charge transfer to the C atom from neighboring Mg atoms. The effect of subsurface C on the dissociation of H-2 on the Mg(0001) surface is found to be relatively marginal: a perfect sublayer of interstitial C is calculated to lower the barrier by 0.16 eV compared with that on a pure Mg(0001) surface. Further calculations reveal, however, that sublayer C may have a significant effect in enhancing the diffusion of atomic hydrogen into the sublayers through fcc channels. This contributes new physical understanding toward rationalizing the experimentally observed improvement in absorption kinetics of H2 when graphite or single walled carbon nanotubes (SWCNT) are introduced into the Mg powder during ball milling.