929 resultados para characteristic vector
Resumo:
G.R. BURTON and R.J. DOUGLAS, Uniqueness of the polar factorisation and projection of a vector-valued mapping. Ann. I.H. Poincare ? A.N. 20 (2003), 405-418.
Resumo:
C.R. Bull and R. Zwiggelaar, 'Discrimination between low atomic number materials from their characteristic scattering of X-ray radiation', Journal of Agricultural Engineering Research 68 (2), 77-87 (1997)
Resumo:
Gohm, Rolf; Dey, S., 'Characteristic function for ergodic tuples', Integral Equations and Operator Theory 58(1) pp.43-63 RAE2008
Resumo:
This article describes neural network models for adaptive control of arm movement trajectories during visually guided reaching and, more generally, a framework for unsupervised real-time error-based learning. The models clarify how a child, or untrained robot, can learn to reach for objects that it sees. Piaget has provided basic insights with his concept of a circular reaction: As an infant makes internally generated movements of its hand, the eyes automatically follow this motion. A transformation is learned between the visual representation of hand position and the motor representation of hand position. Learning of this transformation eventually enables the child to accurately reach for visually detected targets. Grossberg and Kuperstein have shown how the eye movement system can use visual error signals to correct movement parameters via cerebellar learning. Here it is shown how endogenously generated arm movements lead to adaptive tuning of arm control parameters. These movements also activate the target position representations that are used to learn the visuo-motor transformation that controls visually guided reaching. The AVITE model presented here is an adaptive neural circuit based on the Vector Integration to Endpoint (VITE) model for arm and speech trajectory generation of Bullock and Grossberg. In the VITE model, a Target Position Command (TPC) represents the location of the desired target. The Present Position Command (PPC) encodes the present hand-arm configuration. The Difference Vector (DV) population continuously.computes the difference between the PPC and the TPC. A speed-controlling GO signal multiplies DV output. The PPC integrates the (DV)·(GO) product and generates an outflow command to the arm. Integration at the PPC continues at a rate dependent on GO signal size until the DV reaches zero, at which time the PPC equals the TPC. The AVITE model explains how self-consistent TPC and PPC coordinates are autonomously generated and learned. Learning of AVITE parameters is regulated by activation of a self-regulating Endogenous Random Generator (ERG) of training vectors. Each vector is integrated at the PPC, giving rise to a movement command. The generation of each vector induces a complementary postural phase during which ERG output stops and learning occurs. Then a new vector is generated and the cycle is repeated. This cyclic, biphasic behavior is controlled by a specialized gated dipole circuit. ERG output autonomously stops in such a way that, across trials, a broad sample of workspace target positions is generated. When the ERG shuts off, a modulator gate opens, copying the PPC into the TPC. Learning of a transformation from TPC to PPC occurs using the DV as an error signal that is zeroed due to learning. This learning scheme is called a Vector Associative Map, or VAM. The VAM model is a general-purpose device for autonomous real-time error-based learning and performance of associative maps. The DV stage serves the dual function of reading out new TPCs during performance and reading in new adaptive weights during learning, without a disruption of real-time operation. YAMs thus provide an on-line unsupervised alternative to the off-line properties of supervised error-correction learning algorithms. YAMs and VAM cascades for learning motor-to-motor and spatial-to-motor maps are described. YAM models and Adaptive Resonance Theory (ART) models exhibit complementary matching, learning, and performance properties that together provide a foundation for designing a total sensory-cognitive and cognitive-motor autonomous system.
Resumo:
This article compares the performance of Fuzzy ARTMAP with that of Learned Vector Quantization and Back Propagation on a handwritten character recognition task. Training with Fuzzy ARTMAP to a fixed criterion used many fewer epochs. Voting with Fuzzy ARTMAP yielded the highest recognition rates.
Resumo:
The class of all Exponential-Polynomial-Trigonometric (EPT) functions is classical and equal to the Euler-d’Alembert class of solutions of linear differential equations with constant coefficients. The class of non-negative EPT functions defined on [0;1) was discussed in Hanzon and Holland (2010) of which EPT probability density functions are an important subclass. EPT functions can be represented as ceAxb, where A is a square matrix, b a column vector and c a row vector where the triple (A; b; c) is the minimal realization of the EPT function. The minimal triple is only unique up to a basis transformation. Here the class of 2-EPT probability density functions on R is defined and shown to be closed under a variety of operations. The class is also generalised to include mixtures with the pointmass at zero. This class coincides with the class of probability density functions with rational characteristic functions. It is illustrated that the Variance Gamma density is a 2-EPT density under a parameter restriction. A discrete 2-EPT process is a process which has stochastically independent 2-EPT random variables as increments. It is shown that the distribution of the minimum and maximum of such a process is an EPT density mixed with a pointmass at zero. The Laplace Transform of these distributions correspond to the discrete time Wiener-Hopf factors of the discrete time 2-EPT process. A distribution of daily log-returns, observed over the period 1931-2011 from a prominent US index, is approximated with a 2-EPT density function. Without the non-negativity condition, it is illustrated how this problem is transformed into a discrete time rational approximation problem. The rational approximation software RARL2 is used to carry out this approximation. The non-negativity constraint is then imposed via a convex optimisation procedure after the unconstrained approximation. Sufficient and necessary conditions are derived to characterise infinitely divisible EPT and 2-EPT functions. Infinitely divisible 2-EPT density functions generate 2-EPT Lévy processes. An assets log returns can be modelled as a 2-EPT Lévy process. Closed form pricing formulae are then derived for European Options with specific times to maturity. Formulae for discretely monitored Lookback Options and 2-Period Bermudan Options are also provided. Certain Greeks, including Delta and Gamma, of these options are also computed analytically. MATLAB scripts are provided for calculations involving 2-EPT functions. Numerical option pricing examples illustrate the effectiveness of the 2-EPT approach to financial modelling.
Resumo:
Therapeutic anticancer vaccines are designed to boost patients' immune responses to tumors. One approach is to use a viral vector to deliver antigen to in situ DCs, which then activate tumor-specific T cell and antibody responses. However, vector-specific neutralizing antibodies and suppressive cell populations such as Tregs remain great challenges to the efficacy of this approach. We report here that an alphavirus vector, packaged in virus-like replicon particles (VRP) and capable of efficiently infecting DCs, could be repeatedly administered to patients with metastatic cancer expressing the tumor antigen carcinoembryonic antigen (CEA) and that it overcame high titers of neutralizing antibodies and elevated Treg levels to induce clinically relevant CEA-specific T cell and antibody responses. The CEA-specific antibodies mediated antibody-dependent cellular cytotoxicity against tumor cells from human colorectal cancer metastases. In addition, patients with CEA-specific T cell responses exhibited longer overall survival. These data suggest that VRP-based vectors can overcome the presence of neutralizing antibodies to break tolerance to self antigen and may be clinically useful for immunotherapy in the setting of tumor-induced immunosuppression.
Resumo:
BACKGROUND: Integrated vector management (IVM) is increasingly being recommended as an option for sustainable malaria control. However, many malaria-endemic countries lack a policy framework to guide and promote the approach. The objective of the study was to assess knowledge and perceptions in relation to current malaria vector control policy and IVM in Uganda, and to make recommendations for consideration during future development of a specific IVM policy. METHODS: The study used a structured questionnaire to interview 34 individuals working at technical or policy-making levels in health, environment, agriculture and fisheries sectors. Specific questions on IVM focused on the following key elements of the approach: integration of chemical and non-chemical interventions of vector control; evidence-based decision making; inter-sectoral collaboration; capacity building; legislation; advocacy and community mobilization. RESULTS: All participants were familiar with the term IVM and knew various conventional malaria vector control (MVC) methods. Only 75% thought that Uganda had a MVC policy. Eighty percent (80%) felt there was inter-sectoral collaboration towards IVM, but that it was poor due to financial constraints, difficulties in involving all possible sectors and political differences. The health, environment and agricultural sectors were cited as key areas requiring cooperation in order for IVM to succeed. Sixty-seven percent (67%) of participants responded that communities were actively being involved in MVC, while 48% felt that the use of research results for evidence-based decision making was inadequate or poor. A majority of the participants felt that malaria research in Uganda was rarely used to facilitate policy changes. Suggestions by participants for formulation of specific and effective IVM policy included: revising the MVC policy and IVM-related policies in other sectors into a single, unified IVM policy and, using legislation to enforce IVM in development projects. CONCLUSION: Integrated management of malaria vectors in Uganda remains an underdeveloped component of malaria control policy. Cooperation between the health and other sectors needs strengthening and funding for MVC increased in order to develop and effectively implement an appropriate IVM policy. Continuous engagement of communities by government as well as monitoring and evaluation of vector control programmes will be crucial for sustaining IVM in the country.
Resumo:
A preclinical safety study was conducted to evaluate the short- and long-term toxicity of a recombinant adeno-associated virus serotype 8 (AAV2/8) vector that has been developed as an immune-modulatory adjunctive therapy to recombinant human acid α-glucosidase (rhGAA, Myozyme) enzyme replacement treatment (ERT) for patients with Pompe disease (AAV2/8-LSPhGAApA). The AAV2/8-LSPhGAApA vector at 1.6 × 10(13) vector particles/kg, after intravenous injection, did not cause significant short- or long-term toxicity. Recruitment of CD4(+) (but not CD8(+)) lymphocytes to the liver was elevated in the vector-dosed male animals at study day (SD) 15, and in group 8 animals at SD 113, in comparison to their respective control animals. Administration of the vector, either prior to or after the one ERT injection, uniformly prevented the hypersensitivity induced by subsequent ERT in males, but not always in female animals. The vector genome was sustained in all tissues through 16-week postdosing, except for in blood with a similar tissue tropism between males and females. Administration of the vector alone, or combined with the ERT, was effective in producing significantly increased GAA activity and consequently decreased glycogen accumulation in multiple tissues, and the urine biomarker, Glc4, was significantly reduced. The efficacy of the vector (or with ERT) was better in males than in females, as demonstrated both by the number of tissues showing significantly effective responses and the extent of response in a given tissue. Given the lack of toxicity for AAV2/8LSPhGAApA, further consideration of clinical translation is warranted in Pompe disease.
Resumo:
This study has investigated the effects of herpes simplex thymidine kinase gene (HSV-tk) transfer followed by ganciclovir treatment as adjuvant gene therapy to surgical resection in patients with recurrent glioblastoma multiforme (GBM). The study was open and single-arm, and aimed at assessing the feasibility and safety of the technique and indications of antitumor activity. In 48 patients a suspension of retroviral vector-producing cells (VPCs) was administered by intracerebral injection immediately after tumor resection. Intravenous ganciclovir was infused daily 14 to 27 days after surgery. Patients were monitored for adverse events and for life by regular biosafety assaying. Tumor changes were monitored by magnetic resonance imaging (MRI). Reflux during injection was a frequent occurrence but serious adverse events during the treatment period (days 1-27) were few and of a nature not unexpected in this population. One patient experienced transient neurological disorders associated with postganciclovir MRI enhancement. There was no evidence of replication-competent retrovirus in peripheral blood leukocytes or in tissue samples of reresection or autopsy. Vector DNA was shown in the leukocytes of some patients but not in autopsy gonadal samples. The median survival time was 8.6 months, and the 12-month survival rate was 13 of 48 (27%). On MRI studies, tumor recurrence was absent in seven patients for at least 6 months and for at least 12 months in two patients, one of whom remains recurrence free at more than 24 months. Treatment-characteristic images of injection tracks and intracavity hemoglobin were apparent. In conclusion, the gene therapy is feasible and appears to be satisfactorily safe as an adjuvant to the surgical resection of recurrent GBM, but any benefit appears to be marginal. Investigation of the precise effectiveness of this gene therapy requires prospective, controlled studies.
Resumo:
info:eu-repo/semantics/published
Resumo:
The classical Purcell's vector method, for the construction of solutions to dense systems of linear equations is extended to a flexible orthogonalisation procedure. Some properties are revealed of the orthogonalisation procedure in relation to the classical Gauss-Jordan elimination with or without pivoting. Additional properties that are not shared by the classical Gauss-Jordan elimination are exploited. Further properties related to distributed computing are discussed with applications to panel element equations in subsonic compressible aerodynamics. Using an orthogonalisation procedure within panel methods enables a functional decomposition of the sequential panel methods and leads to a two-level parallelism.
Resumo:
A higher order version of the Hopfield neural network is presented which will perform a simple vector quantisation or clustering function. This model requires no penalty terms to impose constraints in the Hopfield energy, in contrast to the usual one where the energy involves only terms quadratic in the state vector. The energy function is shown to have no local minima within the unit hypercube of the state vector so the network only converges to valid final states. Optimisation trials show that the network can consistently find optimal clusterings for small, trial problems and near optimal ones for a large data set consisting of the intensity values from the digitised, grey-level image.
Resumo:
Software metrics are the key tool in software quality management. In this paper, we propose to use support vector machines for regression applied to software metrics to predict software quality. In experiments we compare this method with other regression techniques such as Multivariate Linear Regression, Conjunctive Rule and Locally Weighted Regression. Results on benchmark dataset MIS, using mean absolute error, and correlation coefficient as regression performance measures, indicate that support vector machines regression is a promising technique for software quality prediction. In addition, our investigation of PCA based metrics extraction shows that using the first few Principal Components (PC) we can still get relatively good performance.
Resumo:
A new technique for mode shape expansion in structural dynamic applications is presented based on the perturbed force vector approach. The proposed technique can directly adopt the measured incomplete modal data and include the effect of the perturbation between the analytical and test models. The results show that the proposed technique can provide very accurate expanded mode shapes, especially in cases when significant modelling error exists in the analytical model and limited measurements are available.