880 resultados para calix[4]arenes, calix[8]arenes, self-assembly
Resumo:
Les sels d’imidazolium ont un rôle important dans certaines protéines et acides nucléiques et ont été utilisés à de nombreuses reprises dans des assemblages supramoléculaires en raison de leurs propriétés uniques. Les sels de diimidazolium dérivés sont toutefois moins connus. Ils ont pour l’instant uniquement été utilisés comme des précurseurs de carbènes N-hétérocycliques. Ils sont donc à la base de plusieurs catalyseurs utilisés pour des réactions de couplage croisés mais leurs propriétés sont toutefois méconnues dans le cadre de la chimie supramoléculaire. Cette classe de composés a nottament attiré notre attention en raison de la facilité de modification de leurs propriétés physico-chimiques par modification de leur structure chimique. L’objectif général des travaux présentés dans cette thèse est l’étude des propriétés supramoléculaires des sels de diimidazolium disubstitués en solution (aqueuse ou organique), ainsi qu’en phase solide ou cristal-liquide. L’influence de l’espaceur entre les deux noyaux imidazolium ainsi que l’influence des substituants latéraux et des contre-ions a été étudiée. Dans un premier temps, les propriétés de complexation des sels de diimidazolium à des macrocycles sont étudiées. Les sels bromure sont étudiés en solution aqueuse avec plusieurs cyclodextrines et le cucurbit[7]uril, et les sels hexafluorophosphate sont étudiés en solution organique pour leur complexation avec l’éther couronne DB24C8 et un calix[4]arène. Cette nouvelle classe de composés a montré de très bonnes propriétés de complexation à ces différents macrocycles en solution et a également permis de contrôler différents assemblages supramoléculaires à l’interface air-eau. Dans un deuxième temps, l’étude des sels de phénylènediimidazolium a permis de modifier les propriétés de complexation en solution pour obtenir la formation de complexes multiples avec le cucurbit[7]util en solution aqueuse. Cette même famille de composés a également permis la formation de cristaux liquides ioniques lorsque les substituants sont des chaînes alkyles plus longues. La résolution de plusieurs structures cristallines de différents sels de diimidazolium a finalement permis de comprendre la nature des interactions intermoléculaires à l’état cristallin. La recherche présentée dans cette thèse a donc permis une étude détaillée des propriétés supramoléculaires des sels de diimidazolium dans tous les états de la matière qui leur sont accessibles.
Resumo:
This paper investigates dendritic peptides capable of assembling into nanostructured gels, and explores the effect on self-assembly of mixing different molecular building blocks. Thermal measurements, small angle Xray scattering (SAXS) and circular dichroism (CD) spectroscopy are used to probe these materials on macroscopic, nanoscopic and molecular length scales. The results from these investigations demonstrate that in this case, systems with different "size" and "chirality" factors can self-organise, whilst systems with different "shape" factors cannot. The "size" and "chirality" factors are directly connected with the molecular information programmed into the dendritic peptides, whilst the shape factor depends on the group linking these peptides together-this is consistent with molecular recognition hydrogen bond pathways between the peptidic building blocks controlling the ability of these systems to self-recognise. These results demonstrate that mixtures of relatively complex peptides, with only subtle differences on the molecular scale, can self-organise into nanoscale structures, an important step in the spontaneous assembly of ordered systems from complex mixtures.
Resumo:
Novel macrocyclic receptors which bind electron-donor aromatic substrates via π-stacking donor- acceptor interactions are obtained by cyclo-imidization of an amine-functionalized arylether-sulfone with pyromellitic- and 1,4,5,8-naphthalene-tetracarboxylic dianhydrides. These macrocycles complex with a wide variety of π-donor substrates including tetrathiafulvalene, naphthalene, anthracene, pyrene, perylene, and functional derivatives of these polycyclic hydrocarbons. The resulting supramolecular assemblies range from simple 1:1 complexes, to [2]- and [3]-pseudorotaxanes, and even (as a result of crystallographic disorder) an apparent polyrotaxane. Direct, five-component self-assembly of a metal-centred [3]pseudorotaxane is also observed, on complexation of a macrocyclic ether-imide with 8-hydroxyquinoline in the presence of palladium(II) ions. Binding studies in solution were carried out by 1H NMR and UV-visible spectroscopy, and the stoichiometries of binding were confirmed by Job plots based on charge-transfer absorption bands. The highest association constants are found for strong π-donor guests with large surface-areas, notably perylene and 1-hydroxypyrene, for which Ka values of 1.4 x 103 and 2.3 x 103 M-1 respectively are found. Single crystal X-ray analyses of the receptors and their derived complexes reveal large, induced-fit distortions of the macrocyclic frameworks as a result of complexation. These structures provide compelling evidence for the existence of strong, attractive forces between the electronically-complementary aromatic π-systems of host and guest.
Resumo:
The aim of this work presented here is the characterization of structure and dynamics of different types of supramolecular systems by advanced NMR spectroscopy. One of the characteristic features of NMR spectroscopy is based on its high selectivity. Thus, it is desirable to exploit this technique for studying structure and dynamics of large supramolecular systems without isotopic enrichment. The observed resonance frequencies are not only isotope specific but also influenced by local fields, in particular by the distribution of electron density around the investigated nucleus. Barbituric acid are well known for forming strongly hydrogen-bonded complexes with variety of adenine derivatives. The prototropic tautomerism of this material facilitates an adjustment to complementary bases containing a DDA(A = hydrogen bond acceptor site, D = hydrogen bond donor site) or ADA sequences, thereby yielding strongly hydrogen-bonded complexes. In this contribution solid-state structures of the enolizable chromophor "1-n-butyl-5-(4-nitrophenyl)-barbituric acid" that features adjustable hydrogen-bonding properties and the molecular assemblies with three different strength of bases (Proton sponge, adenine mimetic 2,6-diaminopyridine (DAP) and 2,6-diacetamidopyridine (DAC)) are studied. Diffusion NMR spectroscopy gives information over such interactions and has become the method of choice for measuring the diffusion coefficient, thereby reflecting the effective size and shape of a molecular species. In this work the investigation of supramolecular aggregates in solution state by means of DOSY NMR techniques are performed. The underlying principles of DOSY NMR experiment are discussed briefly and more importantly two applications demonstrating the potential of this method are focused on. Calix[n]arenes have gained a rather prominent position, both as host materials and as platforms to design specific receptors. In this respect, several different capsular contents of tetra urea calix[4]arenes (benzene, benzene-d6, 1-fluorobenzene, 1-fluorobenzene-d5, 1,4-difluorobenzene, and cobaltocenium) are studied by solid state NMR spectroscopy. In the solid state, the study of the interaction between tetra urea calix[4]arenes and guest is simplified by the fact that the guests molecule remains complexed and positioned within the cavity, thus allowing a more direct investigation of the host-guest interactions.
Resumo:
Molecular recognition and self-assembly represent fundamental issues for the construction of supramolecular systems, structures in which the components are held together through non-covalent interactions. The study of host-guest complexes and mechanical interlocked molecules, important examples in this field, is necessary in order to characterize self-assembly processes, achieve more control over the molecular organization and develop sophisticated structures by using properly designed building blocks. The introduction of paramagnetic species, or spin labelling, represents an attractive opportunity that allows their detection and characterization by the Electron Spin Resonance spectroscopy, a valuable technique that provides additional information to those obtained by traditional methods. In this Thesis, recent progresses in the design and the synthesis of new paramagnetic host-guest complexes and rotaxanes characterized by the presence of nitroxide radicals and their investigation by ESR spectroscopy are reported. In Chapter 1 a brief overview of the principal concepts of supramolecular chemistry, the spin labelling approach and the development of ESR methods applied to paramagnetic systems are described. Chapter 2 and 3 are focused on the introduction of radicals in macrocycles as Cucurbiturils and Pillar[n]arenes, due to the interesting binding properties and the potential employment in rotaxanes, in order to investigate their structures and recognition properties. Chapter 4 deals with one of the most studied mechanical interlocked molecules, the bistable [2]rotaxane reported by Stoddart and Heath based on the ciclobis (paraquat-p-phenylene) CBPQT4+, that represents a well known example of molecular switch driven by external stimuli. The spin labelling of analogous architectures allows the monitoring by ESR spectroscopy of the switch mechanism involving the ring compound by tuning the spin exchange interaction. Finally, Chapter 5 contains the experimental procedures used for the synthesis of some of the compounds described in Chapter 2-4.
Resumo:
The precise arraying of functional entities in morphologically well-defined shapes remains one of the key challenges in the processing of organic molecules1. Among various π-conjugated species, pyrene exhibits a set of unique properties, which make it an attractive compound for the utilization in materials science2. In this contribution we report on properties of self-assembled structures prepared from amphiphilic pyrene trimers (Py3) consisting of phosphodiester-linked pyrenes. Depending on the geometry of a pyrene core substitution (1.6-, 1.8-, or 2.7- type, see Scheme), the thermally-controlled self-assembly allows the preparation of supramolecular architectures of different morphologies in a bottom-up approach: two-dimensional (2D) nanosheets3 are formed in case of 1.6- and 2.7-substitution4 whereas one-dimensional (1D) fibers are built from 1.8- substituted isomers. The morphologies of the assemblies are established by AFM and TEM, and the results are further correlated with spectroscopic and scattering data. Two-dimensional assemblies consist of an inner layer of hydrophobic pyrenes, sandwiched between a net of phosphates. Due to the repulsion of the negative charges, the 2D assemblies exist mostly as free-standing sheets. An internal alignment of pyrenes leads to strong exciton coupling with an unprecedented observation (simultaneous development of J- and H-bands from two different electronic transitions). Despite the similarity in spectroscopic properties, the structural parameters of the 2D aggregates drastically depend on the preparation procedure. Under certain conditions extra-large sheets (thickness of 2 nm, aspect ratio area/thickness ~107) in aqueous solution are formed4B. Finally, one-dimensional assemblies are formed as micrometer-long and nanometer-thick fibers. Both, planar and linear structures are intriguing objects for the creation of conductive nanowires that may find interest for applications in supramolecular electronics.
Resumo:
Described are assemblies consisting of polymeric capsules, “polycaps,” formed from two calix[4]arene tetraureas covalently connected at their lower rims. In these structures self-assembly leads to reversibly formed capsule sites along a chain, reminiscent of beads on a string. Their dynamic behavior is characterized by 1H NMR spectroscopy through encapsulation of guest species, reversible polymerization, and the formation of sharply defined hybrid capsules.
Resumo:
One of the challenges that concerns chemistry is the design of molecules able to modulate protein-protein and protein-ligand interactions, since these are involved in many physiological and pathological processes. The interactions occurring between proteins and their natural counterparts can take place through reciprocal recognition of rather large surface areas, through recognition of single contact points and single residues, through inclusion of the substrates in specific, more or less deep binding sites. In many cases, the design of synthetic molecules able to interfere with the processes involving proteins can benefit from the possibility of exploiting the multivalent effect. Multivalency, widely spread in Nature, consists in the simultaneous formation between two entities (cell-cell, cell-protein, protein-protein) of multiple equivalent ligand-recognition site complexes. In this way the whole interaction results particularly strong and specific. Calixarenes furnish a very interesting scaffold for the preparation of multivalent ligands and in the last years calixarene-based ligands demonstrated their remarkable capability to recognize and inhibit or restore the activity of different proteins, with a high efficiency and selectivity in several recognition phenomena. The relevance and versatility of these ligands is due to the different exposition geometries of the binding units that can be explored exploiting the conformational properties of these macrocycles, the wide variety of functionalities that can be linked to their structure at different distances from the aromatic units and to their intrinsic multivalent nature. With the aim of creating new multivalent systems for protein targeting, the work reported in this thesis regards the synthesis and properties of glycocalix[n]arenes and guanidino calix[4]arenes for different purposes. Firstly, a new bolaamphiphile glycocalix[4]arene in 1,3-alternate geometry, bearing cellobiose, was synthesized for the preparation of targeted drug delivery systems based on liposomes. The formed stable mixed liposomes obtained by mixing the macrocycle with DOPC were shown to be able of exploiting the sugar units emerging from the lipid bilayer to agglutinate Concanavalin A, a lectin specific for glucose. Moreover, always thanks to the presence of the glycocalixarene in the layer, the same liposomes demonstrated through preliminary experiments to be uptaken by cancer cells overexpressing glucose receptors on their exterior surface more efficiently respect to simple DOPC liposomes lacking glucose units in their structure. Then a small library of glycocalix[n]arenes having different valency and geometry was prepared, for the creation of potentially active immunostimulants against Streptococcus pneumoniae, particularly the 19F serotype, one of the most virulent. These synthesized glycocalixarenes bearing β-N-acetylmannosamine as antigenic unit were compared with the natural polysaccharide on the binding to the specific anti-19F human polyclonal antibody, to verify their inhibition potency. Among all, the glycocalixarene based on the conformationally mobile calix[4]arene resulted the more efficient ligand, probably due its major possibility to explore the antibody surface and dispose the antigenic units in a proper arrangement for the interaction process. These results pointed out the importance of how the different multivalent presentation in space of the glycosyl units can influence the recognition phenomena. At last, NMR studies, using particularly 1H-15N HSQC experiments, were performed on selected glycocalix[6]arenes and guanidino calix[4]arenes blocked in the cone geometry, in order to better understand protein-ligand interactions. The glycosylated compounds were studied with Ralstonia solanacearum lectin, in order to better understand the nature of the carbohydrate‐lectin interactions in solution. The series of cationic calixarene was employed with three different acidic proteins: GB1, Fld and alpha synuclein. Particularly GB1 and Fld were observed to interact with all five cationic calix[4]arenes but showing different behaviours and affinities.
Resumo:
Tin oxide is considered to be one of the most promising semiconductor oxide materials for use as a gas sensor. However, a simple route for the controllable build-up of nanostructured, sufficiently pure and hierarchical SnO2 structures for gas sensor applications is still a challenge. In the current work, an aqueous SnO2 nanoparticulate precursor sol, which is free of organic contaminants and sorbed ions and is fully stable over time, was prepared in a highly reproducible manner from an alkoxide Sn(OR)4 just by mixing it with a large excess of pure neutral water. The precursor is formed as a separate liquid phase. The structure and purity of the precursor is revealed using XRD, SAXS, EXAFS, HRTEM imaging, FTIR, and XRF analysis. An unconventional approach for the estimation of the particle size based on the quantification of the Sn-Sn contacts in the structure was developed using EXAFS spectroscopy and verified using HRTEM. To construct sensors with a hierarchical 3D structure, we employed an unusual emulsification technique not involving any additives or surfactants, using simply the extraction of the liquid phase, water, with the help of dry butanol under ambient conditions. The originally generated crystalline but yet highly reactive nanoparticles form relatively uniform spheres through self-assembly and solidify instantly. The spheres floating in butanol were left to deposit on the surface of quartz plates bearing sputtered gold electrodes, producing ready-for-use gas sensors in the form of ca. 50 μm thick sphere-based-films. The films were dried for 24 h and calcined at 300°C in air before use. The gas sensitivity of the structures was tested in the temperature range of 150-400°C. The materials showed a very quickly emerging and reversible (20-30 times) increase in electrical conductivity as a response to exposure to air containing 100 ppm of H2 or CO and short (10 s) recovery times when the gas flow was stopped.
Resumo:
In the past few years, remarkable progress has been made in unveiling novel and unique optical properties of strongly coupled plasmonic nanostructures. However, application of such plasmonic nanostructures in biomedicine remains challenging due to the lack of facile and robust assembly methods for producing stable nanostructures. Previous attempts to achieve plasmonic nano-assemblies using molecular ligands were limited due to the lack of flexibility that could be exercised in forming them. Here, we report the utilization of tailor-made hyperbranched polymers (HBP) as linkers to assemble gold nanoparticles (NPs) into nano-assemblies. The ease and flexibility in tuning the particle size and number of branch ends of a HBP makes it an ideal candidate as a linker, as opposed to DNA, small organic molecules and linear or dendrimeric polymers. We report a strong correlation of polymer (HBP) concentration with the size of the hybrid nano-assemblies and “hot-spot” density. We have shown that such solutions of stable HBP-gold nano-assemblies can be barcoded with various Raman tags to provide improved surface-enhanced Raman scattering (SERS) compared with non-aggregated NP systems. These Raman barcoded hybrid nano-assemblies, with further optimization of NP shape, size and “hot-spot” density, may find application as diagnostic tools in nanomedicine.
Resumo:
The nanostructured surface of biomaterials plays an important role in improving their in vitro cellular bioactivity as well as stimulating in vivo tissue regeneration. Inspired by the mussel’s adhesive versatility, which is thought to be due to the plaque–substrate interface being rich in 3,4-dihydroxy-L-phenylalamine (DOPA) and lysine amino acids, in this study we developed a self-assembly method to prepare a uniform calcium phosphate (Ca-P)/polydopamine composite nanolayer on the surface of b-tricalcium phosphate (b-TCP) bioceramics by soaking b-TCP bioceramics in Tris–dopamine solution. It was found that the addition of dopamine, reaction temperature and reaction time are three key factors inducing the formation of a uniform Ca-P/polydopamine composite nanolayer. The formation mechanism of a Ca-P/polydopamine composite nanolayer involved two important steps: (i) the addition of dopamine to Tris–HCl solution decreases the pH value and accelerates Ca and P ionic dissolution from the crystal boundaries of b-TCP ceramics; (ii) dopamine is polymerized to form self-assembled polydopamine film and, at the same time, nanosized Ca-P particles are mineralized with the assistance of polydopamine, in which the formation of polydopamine occurs simultaneously with Ca-P mineralization (formation of nanosized microparticles composed of calcium phosphate-based materials), and finally a self-assembled Ca-P/polydopamine composite nanolayer forms on the surface of the b-TCP ceramics. Furthermore, the formed self-assembled Ca-P/polydopamine composite nanolayer significantly enhances the surface roughness and hydrophilicity of b-TCP ceramics, and stimulates the attachment, proliferation, alkaline phosphate (ALP) activity and bone-related gene expression (ALP, OCN, COL1 and Runx2) of human bone marrow stromal cells. Our results suggest that the preparation of self-assembled Ca-P/polydopamine composite nanolayers is a viable method to modify the surface of biomaterials by significantly improving their surface physicochemical properties and cellular bioactivity for bone regeneration application.
Resumo:
Rationale: Anabolic steroids are drugs of abuse. However, the potential for addiction remains unclear. Testosterone induces conditioned place preference in rats and oral self-administration in hamsters. Objectives: To determine if male rats and hamsters consume testosterone by intravenous (IV) or intracerebroventricular (ICV) self- administration. Methods: With each nose-poke in the active hole during daily 4-h tests in an operant condi- tioning chamber, gonad-intact adult rats and hamsters received 50 mg testosterone in an aqueous solution of b-cyclodextrin via jugular cannula. The inactive nose- poke hole served as a control. Additional hamsters received vehicle infusions. Results: Rats (n=7) expressed a significant preference for the active nose-poke hole (10.0€2.8 responses/4 h) over the inactive hole (4.7€1.2 responses/4 h). Similarly, during 16 days of testosterone self-administration IV, hamsters (n=9) averaged 11.7€2.9 responses/4 h and 6.3€1.1 responses/4 h in the active and inactive nose-poke holes, respectively. By contrast, vehicle controls (n=8) failed to develop a preference for the active nose-poke hole (6.5€0.5 and 6.4€0.3 responses/4 h). Hamsters (n=8) also self-administered 1 mg testosterone ICV (active hole:39.8€6.0 nose-pokes/ 4 h; inactive hole: 22.6€7.1 nose-pokes/4 h). When testosterone was replaced with vehicle, nose-poking in the active hole declined from 31.1€7.6 to 11.9€3.2 responses/ 4 h within 6 days. Likewise, reversing active and inactive holes increased nose-poking in the previously inactive hole from 9.1€1.9 to 25.6€5.4 responses/4 h. However, reducing the testosterone dose from 1 mg to 0.2 mg per 1 ml injection did not change nose-poking. Conclu- sions: Compared with other drugs of abuse, testosterone reinforcement is modest. Nonetheless, these data support the hypothesis that testosterone is reinforcing.
Resumo:
Plasmonic gold nano-assemblies that self-assemble with the aid of linking molecules or polymers have the potential to yield controlled hierarchies of morphologies and consequently result in materials with tailored optical (e.g. localized surface plasmon resonances (LSPR)) and spectroscopic properties (e.g. surface enhanced Raman scattering (SERS)). Molecular linkers that are structurally well-defined are promising for forming hybrid nano-assemblies which are stable in aqueous solution and are increasingly finding application in nanomedicine. Despite much ongoing research in this field, the precise role of molecular linkers in governing the morphology and properties of the hybrid nano-assemblies remains unclear. Previously we have demonstrated that branched linkers, such as hyperbranched polymers, with specific anchoring end groups can be successfully employed to form assemblies of gold NPs demonstrating near-infrared SPRs and intense SERS scattering. We herein introduce a tailored polymer as a versatile molecular linker, capable of manipulating nano-assembly morphologies and hot-spot density. In addition, this report explores the role of the polymeric linker architecture, specifically the degree of branching of the tailored polymer in determining the formation, morphology and properties of the hybrid nano-assemblies. The degree of branching of the linker polymer, in addition to the concentration and number of anchoring groups, is observed to strongly influence the self-assembly process. The assembly morphology shifts primarily from 1D-like chains to 2D plates and finally to 3D-like globular structures, with increase in degree of branching. Insights have been gained into how the morphology influences the SERS performance of these nano-assemblies with respect to hot-spot density. These findings supplement the understanding of the morphology determining nano-assembly formation and pave the way for the possible application of these nano-assemblies as SERS bio-sensors for medical diagnostics.
Resumo:
Using advanced visualization techniques, a comprehensive visualization of all the stages of the self-organized growth of internetworked nanostructures on plasma-exposed surface has been made. Atomistic kinetic Monte Carlo simulation for the initial stage of deposition, with 3-D visualization of the whole system and half-tone visualization of the density field of the adsorbed atoms, makes it possible to implement a multiscale predictive modeling of the development of the nanoscale system.
Resumo:
This paper describes the fabrication of thin films of porphyrin and metallophthalocyanine derivatives on different substrates for the optochemical detection of HCl gas and electrochemical determination of L-cysteine (CySH). Solid state gas sensor for HCl gas was fabricated by coating meso-substituted porphyrin derivatives on glass slide and examined optochemical sensing of HCl gas. The concentration of gaseous HCl was monitored from the changes in the absorbance of Soret band. Among the different porphyrin derivatives, meso- tetramesitylporphyrin (MTMP) coated film showed excellent sensitivity towards HCl and achieved a detection limit of 0.03ppm HCl. Further, we have studied the self-assembly of 1,8,15,22-tetraaminometallophthalocyanine (4α-MTAPc; M = Co and Ni) from DMF on GC electrode. The CVs for the self-assembled monolayers (SAMs) of 4α-CoIITAPc and 4α-NiIITAPc show two pairs of well-defined redox couple corresponding to metal and ring. Using the 4α-CoIITAPc SAM modified electrode, sensitive and selective detection of L-cysteine was demonstrated. Further, the SAM modified electrode also successfully separates the oxidation potentials of AA and CySH with a peak separation of 320mV.