926 resultados para bone morphogenetic protein receptor 1B
Resumo:
A 30-d course of oral administration of a semipurified extract of the root of Withania somnifera consisting predominantly of withanolides and withanosides reversed behavioral deficits, plaque pathology, accumulation of beta-amyloid peptides (A beta) and oligomers in the brains of middle-aged and old APP/PS1 Alzheimer's disease transgenic mice. It was similarly effective in reversing behavioral deficits and plaque load in APPSwInd mice (line J20). The temporal sequence involved an increase in plasma A beta and a decrease in brain A beta monomer after 7 d, indicating increased transport of A beta from the brain to the periphery. Enhanced expression of low-density lipoprotein receptor-related protein (LRP) in brain microvessels and the A beta-degrading protease neprilysin (NEP) occurred 14-21 d after a substantial decrease in brain A beta levels. However, significant increase in liver LRP and NEP occurred much earlier, at 7 d, and were accompanied by a rise in plasma sLRP, a peripheral sink for brain A beta. In WT mice, the extract induced liver, but not brain, LRP and NEP and decreased plasma and brain A beta, indicating that increase in liver LRP and sLRP occurring independent of A beta concentration could result in clearance of A beta. Selective down-regulation of liver LRP, but not NEP, abrogated the therapeutic effects of the extract. The remarkable therapeutic effect of W. somnifera mediated through up-regulation of liver LRP indicates that targeting the periphery offers a unique mechanism for A beta clearance and reverses the behavioral deficits and pathology seen in Alzheimer's disease models.
Resumo:
Guanylyl cyclase C (GC-C) is a multidomain, membrane-associated receptor guanylyl cyclase. GC-C is primarily expressed in the gastrointestinal tract, where it mediates fluid-ion homeostasis, intestinal inflammation, and cell proliferation in a cGMP-dependent manner, following activation by its ligands guanylin, uroguanylin, or the heat-stable enterotoxin peptide (ST). GC-C is also expressed in neurons, where it plays a role in satiation and attention deficiency/hyperactive behavior. GC-C is glycosylated in the extracellular domain, and differentially glycosylated forms that are resident in the endoplasmic reticulum (130 kDa) and the plasma membrane (145 kDa) bind the ST peptide with equal affinity. When glycosylation of human GC-C was prevented, either by pharmacological intervention or by mutation of all of the 10 predicted glycosylation sites, ST binding and surface localization was abolished. Systematic mutagenesis of each of the 10 sites of glycosylation in GC-C, either singly or in combination, identified two sites that were critical for ligand binding and two that regulated ST-mediated activation. We also show that GC-C is the first identified receptor client of the lectin chaperone vesicular integral membrane protein, VIP36. Interaction with VIP36 is dependent on glycosylation at the same sites that allow GC-C to fold and bind ligand. Because glycosylation of proteins is altered in many diseases and in a tissue-dependent manner, the activity and/or glycan-mediated interactions of GC-C may have a crucial role to play in its functions in different cell types.
Resumo:
In this study we determined the molecular mechanisms of how homocysteine differentially affects receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin (OPG) synthesis in the bone. The results showed that oxidative stress induced by homocysteine deranges insulin-sensitive FOXO1 and MAP kinase signaling cascades to decrease OPG and increase RANKL synthesis in osteoblast cultures. We observed that downregulation of insulin/FOXO1 and p38 MAP kinase signaling mechanisms due to phosphorylation of protein phosphatase 2 A (PP2A) was the key event that inhibited OPG synthesis in homocysteine-treated osteoblast cultures. siRNA knockdown experiments confirmed that FOXO1 is integral to OPG and p38 synthesis. Conversely homocysteine increased RANKL synthesis in osteoblasts through c-Jun/JNK MAP kinase signaling mechanisms independent of FOXO1. In the rat bone milieu, high-methionine diet-induced hyperhomocysteinemia lowered FOXO1 and OPG expression and increased synthesis of proresorptive and inflammatory cytokines such as RANKL, M-CSF, IL-1 alpha, IL-1 beta, G-CSF, GM-CSF, MIP-1 alpha, IFN-gamma, IL-17, and TNF-alpha. Such pathophysiological conditions were exacerbated by ovariectomy. Lowering the serum homocysteine level by a simultaneous supplementation with N-acetylcysteine improved OPG and FOXO1 expression and partially antagonized RANKL and proresorptive cytokine synthesis in the bone milieu. These results emphasize that hyperhomocysteinemia alters the redox regulatory mechanism in the osteoblast by activating PP2A and deranging FOXO1 and MAPK signaling cascades, eventually shifting the OPG:RANKL ratio toward increased osteoclast activity and decreased bone quality (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
The redox regulation of protein tyrosine phosphatase 1B (PTP1B) via the unusual transformation of its sulfenic acid (PTP1B-SOH) to a cyclic sulfenyl amide intermediate is studied by using small molecule chemical models. These studies suggest that the sulfenic acids derived from the H2O2-mediated reactions o-amido thiophenols do not efficiently cyclize to sulfenyl amides and the sulfenic acids produced in situ can be trapped by using methyl iodide. Theoretical calculations suggest that the most stable conformer of such sulfenic acids are stabilized by n(O) -> sigma* (S-OH) orbital interactions, which force the -OH group to adopt a position trans to the S center dot center dot center dot O interaction, leading to an almost linear arrangement of the O center dot center dot center dot S-O moiety and this may be the reason for the slow cyclization of such sulfenic acids to their corresponding sulfenyl amides. On the other hand, additional substituents at the 6-position of o-amido phenylsulfenic acids that can induce steric environment and alter the electronic properties around the sulfenic acid moiety by S center dot center dot center dot N or S center dot center dot center dot O nonbonded interactions destabilize the sulfenic acids by inducing strain in the molecule. This may lead to efficient the cyclization of such sulfenic acids. This model study suggests that the amino acid residues in the close proximity of the sulfenic acid moiety in PTP1B may play an important role in the cyclization of PTP1B-SOH to produce the corresponding sulfenyl amide.
Resumo:
Chromatin immunoprecipitation identified 191 binding sites of Mycobacterium tuberculosis cAMP receptor protein (CRPMt) at endogenous expression levels using a specific alpha-CRPMt antibody. Under these native conditions an equal distribution between intragenic and intergenic locations was observed. CRPMt binding overlapped a palindromic consensus sequence. Analysis by RNA sequencing revealed widespread changes in transcriptional profile in a mutant strain lacking CRPMt during exponential growth, and in response to nutrient starvation. Differential expression of genes with a CRPMt-binding site represented only a minor portion of this transcriptional reprogramming with similar to 19% of those representing transcriptional regulators potentially controlled by CRPMt. The subset of genes that are differentially expressed in the deletion mutant under both culture conditions conformed to a pattern resembling canonical CRP regulation in Escherichia coli, with binding close to the transcriptional start site associated with repression and upstream binding with activation. CRPMt can function as a classical transcription factor in M. tuberculosis, though this occurs at only a subset of CRPMt-binding sites.
Resumo:
Specific and coordinated regulation of innate immune receptor-driven signaling networks often determines the net outcome of the immune responses. Here, we investigated the cross-regulation of toll-like receptor (TLR)2 and nucleotide-binding oligomerization domain (NOD)2 pathways mediated by Ac2PIM, a tetra-acylated form of mycobacterial cell wall component and muramyl dipeptide (MDP), a peptidoglycan derivative respectively. While Ac2PIM treatment of macrophages compromised their ability to induce NOD2-dependent immunomodulators like cyclooxygenase (COX)-2, suppressor of cytokine signaling (SOCS)-3, and matrix metalloproteinase (MMP)-9, no change in the NOD2-responsive NO, TNF-alpha, VEGF-A, and IL-12 levels was observed. Further, genome-wide microRNA expression profiling identified Ac2PIM-responsive miR-150 and miR-143 to target NOD2 signaling adaptors, RIP2 and TAK1, respectively. Interestingly, Ac2PIM was found to activate the SRC-FAK-PYK2-CREB cascade via TLR2 to recruit CBP/P300 at the promoters of miR-150 and miR-143 and epigenetically induce their expression. Loss-of-function studies utilizing specific miRNA inhibitors establish that Ac2PIM, via the miRNAs, abrogate NOD2-induced PI3K-PKC delta-MAPK pathway to suppress beta-catenin-mediated expression of COX-2, SOCS-3, and MMP-9. Our investigation has thus underscored the negative regulatory role of Ac2PIM-TLR2 signaling on NOD2 pathway which could broaden our understanding on vaccine potential or adjuvant utilities of Ac2PIM and/or MDP.
Resumo:
The Tie-2 receptor has been shown to play a role in angiogenesis in atherosclerosis. The conventional method assaying the level of soluble Tie-2 (sTie-2) was ELISA. However, this method has some disadvantages. The aims of this research are to establish a more simple detection method, the optical protein-chip based on imaging ellipsomtry (OPC-IE) applying to Tie-2 assay. The sTie-2 biosensor surface on silicon wafer was prepared first, and then serum levels of sTie-2 in 38 patients with AMI were measured on admission (day 1), day 2, day 3 and day 7 after onset of chest pain and 41 healthy controls by ELISA and OPC-IE in parallel. Median level of sTie-2 increased significantly in the AMI patients when compared with the controls. Statistics showed there was a significant correlation in sTie-2 results between the two methods (r=0.923, P0.01). The result of this study showed that the level of sTie-2 increased in AMI, and OPC-IE assay was a fast, reliable, and convenient technique to measure sTie-2 in serum.
Resumo:
The neonatal Fe receptor (FeRn) binds the Fe portion of immunoglobulin G (IgG) at the acidic pH of endosomes or the gut and releases IgG at the alkaline pH of blood. FeRn is responsible for the maternofetal transfer of IgG and for rescuing endocytosed IgG from a default degradative pathway. We investigated how FeRn interacts with IgG by constructing a heterodimeric form of the Fe (hdFc) that contains one FeRn binding site. This molecule was used to characterize the interaction between one FeRn molecule and one Fe and to determine under what conditions FeRn forms a dimer. The hdFc binds one FeRn molecule at pH 6.0 with a K_d of 80 nM. In solution and with FeRn anchored to solid supports, the heterodimeric Fe does not induce a dimer of FeRn molecules. FcRnhdFc complex crystals were obtained and the complex structure was solved to 2.8 Å resolution. Analysis of this structure refined the understanding of the mechanism of the pH-dependent binding, shed light on the role played by carbohydrates in the Fe binding, and provided insights on how to design therapeutic IgG antibodies with longer serum half-lives. The FcRn-hdFc complex in the crystal did not contain the FeRn dimer. To characterize the tendency of FeRn to form a dimer in a membrane we analyzed the tendency of the hdFc to induce cross-phosphorylation of FeRn-tyrosine kinase chimeras. We also constructed FeRn-cyan and FeRn-yellow fluorescent proteins and have analyzed the tendency of these molecules to exhibit fluorescence resonance energy transfer. As of now, neither of these analyses have lead to conclusive results. In the process of acquiring the context to appreciate the structure of the FcRn-hdFc interface, we developed a study of 171 other nonobligate protein-protein interfaces that includes an original principal component analysis of the quantifiable aspects of these interfaces.
Resumo:
G protein-coupled receptors (GPCRs) are the largest family of proteins within the human genome. They consist of seven transmembrane (TM) helices, with a N-terminal region of varying length and structure on the extracellular side, and a C-terminus on the intracellular side. GPCRs are involved in transmitting extracellular signals to cells, and as such are crucial drug targets. Designing pharmaceuticals to target GPCRs is greatly aided by full-atom structural information of the proteins. In particular, the TM region of GPCRs is where small molecule ligands (much more bioavailable than peptide ligands) typically bind to the receptors. In recent years nearly thirty distinct GPCR TM regions have been crystallized. However, there are more than 1,000 GPCRs, leaving the vast majority of GPCRs with limited structural information. Additionally, GPCRs are known to exist in a myriad of conformational states in the body, rendering the static x-ray crystal structures an incomplete reflection of GPCR structures. In order to obtain an ensemble of GPCR structures, we have developed the GEnSeMBLE procedure to rapidly sample a large number of variations of GPCR helix rotations and tilts. The lowest energy GEnSeMBLE structures are then docked to small molecule ligands and optimized. The GPCR family consists of five subfamilies with little to no sequence homology between them: class A, B1, B2, C, and Frizzled/Taste2. Almost all of the GPCR crystal structures have been of class A GPCRs, and much is known about their conserved interactions and binding sites. In this work we particularly focus on class B1 GPCRs, and aim to understand that family’s interactions and binding sites both to small molecules and their native peptide ligands. Specifically, we predict the full atom structure and peptide binding site of the glucagon-like peptide receptor and the TM region and small molecule binding sites for eight other class B1 GPCRs: CALRL, CRFR1, GIPR, GLR, PACR, PTH1R, VIPR1, and VIPR2. Our class B1 work reveals multiple conserved interactions across the B1 subfamily as well as a consistent small molecule binding site centrally located in the TM bundle. Both the interactions and the binding sites are distinct from those seen in the more well-characterized class A GPCRs, and as such our work provides a strong starting point for drug design targeting class B1 proteins. We also predict the full structure of CXCR4 bound to a small molecule, a class A GPCR that was not closely related to any of the class A GPCRs at the time of the work.
Resumo:
Human neutrophils are a type of white blood cell, which forms an early line of defense against bacterial infections. Neutrophils are highly responsive to the chemokine, interleukin-8 (IL-8) due to the abundant distribution of CXCR1, one of the IL-8 receptors on the neutrophil cell surface. As a member of the GPCR family, CXCR1 plays a crucial role in the IL-8 signal transduction pathway in neutrophils. We sequenced the complete coding region of the CXCR1 gene in worldwide human populations and five representative nonhuman primate species. Our results indicate accelerated protein evolution in the human lineage, which was likely caused by Darwinian positive selection. The sliding window analysis and the codon-based neutrality test identified signatures of positive selection at the N-terminal ligand/receptor recognition domain of human CXCR1.
Resumo:
Learning and memory are exquisitely sensitive to behavioral stress, but the underlying mechanisms are still poorly understood. Because activity-dependent persistent changes in synaptic strength are believed to mediate memory processes in brain areas such as the hippocampus we have examined the means by which stress affects synaptic plasticity in the CA1 region of the hippocampus of anesthetized rats, Inescapable behavioral stress (placement on an elevated platform for 30 min) switched the direction of plasticity, favoring low frequency stimulation-induced decreases in synaptic transmission (long-term depression, LTD), and opposing the induction of long-term potentiation by high frequency stimulation, We have discovered that glucocorticoid receptor activation mediates these effects of stress on LTD and longterm potentiation in a protein synthesis-dependent manner because they were prevented by the glucocorticoid receptor antagonist RU 38486 and the protein synthesis inhibitor emetine. Consistent with this, the ability of exogenously applied corticosterone in non-stressed rats to mimic the effects of stress on synaptic plasticity was also blocked by these agents, The enablement of low frequency stimulation-induced LTD by both stress and exogenous corticosterone was also blocked by the transcription inhibitor actinomycin D, Thus, naturally occurring synaptic plasticity is liable to be reversed in stressful situations via glucocorticoid receptor activation and mechanisms dependent on the synthesis of new protein and RNA, This indicates that the modulation of hippocampus-mediated learning by acute inescapable stress requires glucocorticoid receptor-dependent initiation of transcription and translation.
Resumo:
In Drosophila, Toll signaling cascade, which resembles the mammalian Toll-like receptor (TLR)/IL-1R signaling pathways and regulates the expression of anti-microbial peptide genes, mainly relies on peptidoglycan recognition proteins (PGRPs) for the detection of bacterial pathogens. To explore the effect of zebrafish peptidoglycan recognition protein 6 (zfPGRP6) on Toll-like receptor signaling pathway, RNA interference (siRNA) and real time quantitative PCR (RQ-PCR) methods were used to identify differentially expressed genes regulated by zfPGRP6. The target genes included TLR2, TLR3, TLR5, TLR7, TLR8, IL1R, Sterile-alpha and Armadillo motif containing protein (SARM), myeloid differentiation factor 88 (MyD88) and nuclear factor (NF)-kappa B2 (p100/p52). The results of RQ-PCR showed that RNAi-mediated Suppression of zfPGRP6 significantly down-regulated the expression of TLR2, TLR5, IL1R, SARM, MyD88 and p100/p52. The expression of beta-defensin-1 was also down-regulated in those embryos silenced by zfPGRP6. In challenge experiments to determine the anti-bacterial response to Gram-negative bacteria, RNAi knock-down of zfPGRP6 markedly increased susceptibility to Flavobacterium columnare. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
G protein-coupled receptors (GPCRs) constitute a large superfamily involved in various types of signal transduction pathways, and play an important role in coordinating the activation and migration of leukocytes to sites of infection and inflammation. Viral GPCRs, on the other hand, can help the virus to escape from host immune surveillance and contribute to viral pathogenesis. Lymphocystis disease virus isolated in China (LCDV-C) contains a putative homolog of cellular GPCRs, LCDV-C GPCR. In this paper, LCDV-C GPCR was cloned, and the subcellular localization and characterization of GPCR protein were investigated in fish cells. LCDV-C GPCR encoded a 325-amino acid peptide, containing a typical seven-transmembrane domain characteristic of the chemokine receptors and a conserved DRY motif that is usually essential for receptor activation. Transient transfection of GPCR-EGFP in fathead minnow (FHM) cells and epithelioma papulosum cyprini (EPC) cells indicated that LCDV-C GPCR was expressed abundantly in both the cytoplasm and nucleoplasm. Transient overexpression of GPCR in these two cells cannot induce obvious apoptosis. FHM cells stably expressing GPCR showed enhanced cell proliferation and significant anchorage-independent growth. The effects of GPCR protein on external apoptotic stimuli were examined. Few apoptotic bodies were observed in cells expressing GPCR treated with actinomycin D (ActD). Quantitative analysis of apoptotic cells indicated that a considerable decrease in the apoptotic fraction of cells expressing GPCR, compared with. the control cells, was detected after exposure to ActD and cycloheximide. These data suggest that LCDV-C GPCR may inhibit apoptosis as part of its potential mechanism in mediating cellular transformation.
Resumo:
The family of fibrinogen-related proteins (FREPs) is a group of proteins with fibrinogen-like domains. Many members of this family play important roles as pattern recognition receptors in innate immune responses. The cDNA of bay scallop Argopecten irradians FREP (designated as AiFREP) was cloned by rapid amplification of cDNA ends (RACE) method based on the expressed sequence tag (EST). The full-length cDNA of AiFREP was of 990 bp. The open reading frame encoded a polypeptide of 251 amino acids, including a signal sequence and a 213 amino acids fibrinogen-like domain. The fibrinogen-like domain of AiFREP was highly similar to those of mammalian ficolins and other FREPs. The temporal expression of AiFREP mRNA in hemolymph was examined by fluorescent quantitative real-time PCR. The mRNA level of scallops challenged by Listonella anguillarum was significantly up-regulated, peaked to 9.39-fold at 9 h after stimulation, then dropped back to 4.37-fold at 12 h, while there was no significant change in the Micrococcus luteus challenged group in all periods of treatment. The function of AiFREP was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli Rosetta gami (DE3). The recombinant AiFREP (rAiFREP) agglutinated chicken erythrocytes and human A, B, O-type erythrocytes. The agglutinating activities were calcium-dependent and could be inhibited by acetyl group-containing carbohydrates. rAiFREP also agglutinated Gram-negative bacteria E. coli JM109, L anguillarum and Gram-positive bacteria M. luteus in the presence of calcium ions. These results collectively suggested that AiFREP functions as a pattern recognition receptor in the immune response of bay scallop and contributed to nonself recognition in invertebrates, which would also provide clues for elucidating the evolution of the lectin pathway of the complement system. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND: Impaired myocardial beta-adrenergic receptor (betaAR) signaling, including desensitization and functional uncoupling, is a characteristic of congestive heart failure. A contributing mechanism for this impairment may involve enhanced myocardial beta-adrenergic receptor kinase (betaARK1) activity because levels of this betaAR-desensitizing G protein-coupled receptor kinase (GRK) are increased in heart failure. An hypothesis has emerged that increased sympathetic nervous system activity associated with heart failure might be the initial stimulus for betaAR signaling alterations, including desensitization. We have chronically treated mice with drugs that either activate or antagonize betaARs to study the dynamic relationship between betaAR activation and myocardial levels of betaARK1. METHODS AND RESULTS: Long-term in vivo stimulation of betaARs results in the impairment of cardiac +betaAR signaling and increases the level of expression (mRNA and protein) and activity of +betaARK1 but not that of GRK5, a second GRK abundantly expressed in the myocardium. Long-term beta-blocker treatment, including the use of carvedilol, improves myocardial betaAR signaling and reduces betaARK1 levels in a specific and dose-dependent manner. Identical results were obtained in vitro in cultured cells, demonstrating that the regulation of GRK expression is directly linked to betaAR signaling. CONCLUSIONS: This report demonstrates, for the first time, that betaAR stimulation can significantly increase the expression of betaARK1 , whereas beta-blockade decreases expression. This reciprocal regulation of betaARK1 documents a novel mechanism of ligand-induced betaAR regulation and provides important insights into the potential mechanisms responsible for the effectiveness of beta-blockers, such as carvedilol, in the treatment of heart failure.