900 resultados para apocrine gland
Resumo:
Queens and workers are not morphologically differentiated in the primitively eusocial wasp, Ropalidia marginata. Upon removal of the queen, one of the workers becomes extremely aggressive, but immediately drops her aggression if the queen is returned. If the queen is not returned, this hyper-aggressive individual, the potential queen (PQ), will develop her ovaries, lose her hyper-aggression, and become the next colony queen. Because of the non-aggressive nature of the queen, and because the PQ loses her aggression by the time she starts laying eggs, we hypothesized that regulation of worker reproduction in R marginata is mediated by pheromones rather than by physical aggression. Based on the immediate loss of aggression by the PQ upon return of the queen, we developed a bioassay to test whether the queen's Dufour's gland is, at least, one of the sources of the queen pheromone. Macerates of the queen's Dufour's gland, but not that of the worker's Dufour's gland, mimic the queen in making the PQ decrease her aggression. We also correctly distinguished queens and workers of R. marginata nests by a discriminant function analysis based on the chemical composition of their respective Dufour's glands.
Resumo:
The role of hippuric acid formation as a mechanism for detoxication of benzoic acid in the silkworm has been investigated. Benzoate is inhibitory to the growth of the silkworm and excreted as hippuric acid, which is not toxic. Hippuric acid is not a normal constituent of excreta. Synthesis of hippuric acid has been shown to occur in the intestines of the silkworm. Hippuricase activity is present in the fat body and silk-gland tissue.
Resumo:
Sjögren s syndrome (SS) is a strongly female dominant autoimmune disease. SS targets mainly salivary and lacrimal glands and leads to loss of the secreting acinar cells of these glands. Accordingly, secretion of the affected glands is diminished and the main symptoms of SS, dryness of mouth and eyes, follow. In addition to these sicca symptoms, SS patients suffer from severe fatigue and can have various extraglandular symptoms. To date, the etiology of SS still remains unknown. Female dominance and the late onset of the disease simultaneously with remarkable hormonal changes in the body (menopause, adrenopause) encouraged us to hypothesize that sex steroids, especially androgens, are involved in the onset and progression of SS. We confirmed our hypothesis and showed that patients with SS suffer from androgen depletion both systemically and locally in the target tissue of SS, salivary glands. We especially focused on the local androgen environment in salivary glands and demonstrated that healthy salivary glands contain a complete enzymatic machinery for local synthesis of androgens and estrogens from pro-hormone dehydroepiandrosterone (DHEA). However, in SS salivary glands the enzymes catalyzing the local androgen synthesis are defective and, in a subgroup of patients, practically non-functional. Probably due to this local defect in DHEA processing, therapy with DHEA was found unbeneficial for SS patients in the treatment of fatigue. We also studied the effect of the local androgen depletion on salivary glands. We found that in salivary gland cells and healthy labial salivary glands androgens upregulate integrin subunits α1 and α2, which are important for the communication, differentiation and function of the acinar cells. On the contrary, in SS salivary glands DHEA failed to upregulate these signaling molecules, again probably due to defective processing of DHEA into active androgens. Our finding highlights the importance of the local androgen environment and local DHEA processing for the function and welfare of salivary glands. In conclusion, this study showed that patients with SS are androgen depleted both systemically and locally in salivary glands. SS patients also have a defective local sex steroid synthesizing enzymatic machinery further impairing the local androgen depletion. We also showed that the local androgen defect leads to decreased expression of acinar cell specific integrin molecules, which impairs the signaling between the acinar cells and basement membrane and might thus explain the acinar cell loss seen in SS salivary glands. By showing the importance of the local sex steroid imbalance in SS we have clarified some etiopathogenetic mechanisms of SS, which have thus far remained unknown.
Resumo:
The transport of glycine in vitro into the silk glands of the silkworm has been studied. Glycine accumulates inside the tissue to a concentration higher than that present outside, indicating an active transport mechanism. The kinetics of uptake show a biphasic curve and two apparent Km values for accumulation, 0.33 mM and 5.00 mM. The effect of inhibitors on the energy metabolism of glycine transport is inconclusive. Exchange studies indicate the existence of two pools inside the gland, one that is easily removed by exchange and osmotic shock, and the other which is not. The results obtained conform with the carrier model of Britten and McClure concerning the amino-acid pool in E. coli.
Resumo:
Transcription factors play a key role in tumor development, in which dysfunction of genes regulating tissue growth and differentiation is a central phenomenon. The GATA family of transcription factors consists of six members that bind to a consensus DNA sequence (A/T)GATA(A/G) in gene promoters and enhancers. The two GATA factors expressed in the adrenal cortex are GATA-4 and GATA-6. In both mice and humans, GATA-4 can be detected only during the fetal period, whereas GATA-6 expression is abundant both throughout development and in the adult. It is already established that GATA factors are important in both normal development and tumorigenesis of several endocrine organs, and expression of GATA-4 and GATA-6 is detected in adrenocortical tumors. The aim of this study was to elucidate the function of these factors in adrenocortical tumor growth. In embryonal development, the adrenocortical cells arise and differentiate from a common pool with gonadal steroidogenic cells, the urogenital ridge. As the adult adrenal cortex undergoes constant renewal, it is hypothesized that undifferentiated adrenocortical progenitor cells reside adjacent to the adrenal capsule and give rise to daughter cells that differentiate and migrate centripetally. A diverse array of hormones controls the differentiation, growth and survival of steroidogenic cells in the adrenal gland and the gonads. Factors such as luteinizing hormone and inhibins, traditionally associated with gonadal steroidogenic cells, can also influence the function of adrenocortical cells in physiological and pathophysiological states. Certain inbred strains of mice develop subcapsular adrenocortical tumors in response to gonadectomy. In this study, we found that these tumors express GATA-4, normally absent from the adult adrenal cortex, while GATA-6 expression is downregulated. Gonadal markers such as luteinizing hormone receptor, anti-Müllerian hormone and P450c17 are also expressed in the neoplastic cells, and the tumors produce gonadal hormones. The tumor cells have lost the expression of melanocortin-2 receptor and the CYP enzymes necessary for the synthesis of corticosterone and aldosterone. By way of xenograft studies utilizing NU/J nude mice, we confirmed that chronic gonadotropin elevation is sufficient to induce adrenocortical tumorigenesis in susceptible inbred strains. Collectively, these studies suggest that subcapsular adrenocortical progenitor cells can, under certain conditions, adopt a gonadal fate. We studied the molecular mechanisms involved in gene regulation in endocrine cells in order to elucidate the role of GATA factors in endocrine tissues. Ovarian granulosa cells express both GATA-4 and GATA-6, and the TGF-β signaling pathway is active in these cells. Inhibin-α is both a target gene for, and an atypical or antagonistic member of the TGF-β growth factor superfamily. In this study, we show that GATA-4 is required for TGF-β-mediated inhibin-α promoter activation in granulosa cells, and that GATA-4 physically interacts with Smad3, a TGF-β downstream protein. Apart from the regulation of steroidogenesis and other events in normal tissues, TGF-β signaling is implicated in tumors of multiple organs, including the adrenal cortex. Another signaling pathway found often to be aberrantly active in adrenocortical tumors is the Wnt pathway. As both of these pathways regulate the expression of inhibin-α, a transcriptional target for GATA-4 and GATA-6, we wanted to investigate whether GATA factors are associated with the components of these signaling cascades in human adrenocortical tumors. We found that the expression of Wnt co-receptors LRP5 and LRP6, Smad3, GATA-6 and SF-1 was diminished in adrenocortical carcinomas with poor outcome. All of these factors drive inhibin-α expression, and their expression in adrenocortical tumors correlated with that of inhibin-α. The results support a tumor suppressor role previously suggested for inhibin-α in the mouse adrenal cortex, and offer putative pathways associated with adrenocortical tumor aggressiveness. Unraveling the role of GATA factors and associated molecules in human and mouse adrenocortical tumors could ultimately contribute to the development of diagnostic tools and future therapies for these diseases.
Resumo:
The silk gland of Bombyx mori is a terminally differentiated tissue in which DNA replication continues without cell or nuclear division during larval development. DNA polymerase-delta activity increases in the posterior and middle silk glands during the development period, reaching maximal levels in the middle of the fifth instar larvae. The enzyme has been purified to homogeneity by a series of column chromatographic and affinity purification steps. It is a multimer comprising of three heterogeneous subunits, M(r) 170,000, 70,000, and 42,000. An auxiliary protein from B. mori silk glands, analogous to the proliferating cell nuclear antigen, enhances the processivity of the enzyme and stimulates catalytic activity by 3-fold. This auxiliary protein has also been purified to homogeneity. It is a dimer comprised of a single type M(r) 40,000 subunit. Polymerase-delta possesses an intrinsic 3' --> 5' exonuclease activity which participates in proofreading by mismatch match repair during DNA synthesis and is devoid of any primase activity. DNA polymerase-delta activity could be further distinguished from polymerase-alpha from the same tissue based on its sensitivity to various inhibitors and polyclonal antibodies to the individual enzymes. Like DNA polymerase-alpha, polymerase-delta is also tightly associated with the nuclear matrix. The polymerase alpha-primase complex could be readily separated from polymerase-delta (exonuclease) in the purification protocol adopted. DNA polymerase-delta from B. mori silk glands resembles the mammalian delta-polymerases. Considering that both DNA polymerase-delta and -alpha are present in nearly equal amounts in this highly replicative tissue and their close association with the nuclear matrix, the involvement of both the enzymes in the chromosomal endoreplication process in B. mori is strongly implicated.
Resumo:
Ten different tRNAGly1 genes from the silk worm, Bombyx mori, have been cloned and characterized. These genes were transcribed in vitro in homologous nuclear extracts from the posterior silk gland (PSG) or nuclear extracts derived from the middle silk gland or ovarian tissues. Although the transcription levels were much higher in the PSG nuclear extracts, the transcriptional efficiency of the individual genes followed a similar pattern in all the extracts. Based on the levels of in vitro transcription, the ten tRNAGly1 genes could be divided into three groups, viz., those which were transcribed at very high levels (e.g., clone pR8), high to medium levels (e.g., pBmil, pBmpl, pBmhl, pBmtl) and low to barely detectable levels (e.g., pBmsl, pBmjl and pBmkl). The coding sequences of all these tRNA genes being identical, the differential transcription suggested that the flanking sequences modulate their transcriptional efficiency. The presence of positive and negative regulatory elements in the 5' flanking regions of these genes was confirmed by transcription competition experiments. A positive element was present in the immediate upstream A + T-rich sequences in all the genes, but no consensus sequences correlating to the transcriptional status could be generated. The presence of negative elements on the other hand was indicated only in some of the genes and therefore may have a role in the differential transcription of these tRNAGly genes in vivo.
Resumo:
The silk gland of Bombyx mori, an endomitotically replicative tissue shows high levels of DNA polymerases alpha, delta, and epsilon activities. The ratio of polymerase alpha to that of delta plus epsilon is maintained at 1.1 to 1.3 in both the posterior and middle silk glands for the entire duration of late larval development. The three activities copurify in the initial stages of fractionation through phosphocellulose and DE52 but polymerase alpha gets resolved from the others on hydroxylapatite column. Separation between polymerase delta and epsilon is achieved by chromatography on QAE-Sephadex. DNA polymerase epsilon is a heterodimer comprising of 215- and 42-kDa subunits. The activity is maximum at pH 6.5 and the Km values for dNTPs vary between 3-9 microM. The enzyme possesses an intrinsically associated exonuclease activity which functions in the mismatch repair during DNA synthesis. Both polymerase and 3'-->5' exonuclease activities are associated with the 215-kDa subunit. By itself, DNA polymerase epsilon is processive and the catalytic activity is not enhanced by externally added bPCNA (Bombyx-proliferating cell nuclear antigen, an auxiliary protein for DNA polymerase delta). The enzyme resembles polymerase delta in having the exonuclease activity and in its response to aphidicolin or substrate analogs, but could be distinguished from the latter by its lack of response to the bPCNA and sensitivity to dimethyl sulfoxide. The two enzymes show partial immunological cross-reactivity with each other but no immunological relatedness to polymerase alpha. The absence of the repair enzyme DNA polymerase beta and the presence of substantial levels of polymerase epsilon in the silk glands suggest a possible role for the latter in DNA repair in that tissue.
Resumo:
Uroguanylin, guanylin, and lymphoguanylin are small peptides that activate renal and intestinal receptor guanylate cyclases (GC). They are structurally similar to bacterial heat-stable enterotoxins (ST) that cause secretory diarrhea. Uroguanylin, guanylin, and ST elicit natriuresis, kaliuresis, and diuresis by direct actions on kidney GC receptors. A 3,762-bp cDNA characterizing a uroguanylin/guanylin/ST receptor was isolated from opossum kidney (OK) cell RNA/cDNA. This kidney cDNA (OK-GC) encodes a mature protein containing 1,049 residues sharing 72.4�75.8% identity with rat, human, and porcine forms of intestinal GC-C receptors. COS or HEK-293 cells expressing OK-GC receptor protein were activated by uroguanylin, guanylin, or ST13 peptides. The 3.8-kb OK-GC mRNA transcript is most abundant in the kidney cortex and intestinal mucosa, with lower mRNA levels observed in urinary bladder, adrenal gland, and myocardium and with no detectable transcripts in skin or stomach mucosa. We propose that OK-GC receptor GC participates in a renal mechanism of action for uroguanylin and/or guanylin in the physiological regulation of urinary sodium, potassium, and water excretion. This renal tubular receptor GC may be a target for circulating uroguanylin in an endocrine link between the intestine and kidney and/or participate in an intrarenal paracrine mechanism for regulation of kidney function via the intracellular second messenger, cGMP.
Resumo:
Uroguanylin, guanylin, and lymphoguanylin are small peptides that activate renal and intestinal receptor guanylate cyclases (GC). They are structurally similar to bacterial heat-stable enterotoxins (ST) that cause secretory diarrhea. Uroguanylin, guanylin, and ST elicit natriuresis, kaliuresis, and diuresis by direct actions on kidney GC receptors. A 3,762-bp cDNA characterizing a uroguanylin/guanylin/ST receptor was isolated from opossum kidney (OK) cell RNA/cDNA. This kidney cDNA (OK-GC) encodes a mature protein containing 1,049 residues sharing 72.4-75.8% identity with rat, human, and porcine forms of intestinal GC-C receptors. COS or HEK-293 cells expressing OK-GC receptor protein were activated by uroguanylin, guanylin, or ST13 peptides. The 3.8-kb OK-GC mRNA transcript is most abundant in the kidney cortex and intestinal mucosa, with lower mRNA levels observed in urinary bladder, adrenal gland, and myocardium and with no detectable transcripts in skin or stomach mucosa. We propose that OK-GC receptor GC participates in a renal mechanism of action for uroguanylin and/or guanylin in the physiological regulation of urinary sodium, potassium, and water excretion. This renal tubular receptor GC may be a target for circulating uroguanylin in an endocrine link between the intestine and kidney and/or participate in an intrarenal paracrine mechanism for regulation of kidney function via the intracellular second messenger, cGMP.
Resumo:
Queens of many social insect species are known to maintain reproductive monopoly by pheromonal signalling of fecundity. Queens of the primitively eusocial wasp Ropalidia marginata appear to do so using secretions from their Dufour's glands, whose hydrocarbon composition is correlated with fertility. Solitary nest foundresses of R. marginata are without nestmates; hence expressing a queen signal can be redundant, since there is no one to receive the signal. But if queen pheromone is an honest signal inextricably linked with fertility, it should correlate with fertility and be expressed irrespective of the presence or absence of receivers of the signal, by virtue of being a byproduct of the state of fertility. Hence we compared the Dufour's gland hydrocarbons and ovaries of solitary foundresses with queens and workers of post-emergence nests. Our results suggest that queen pheromone composition in R. marginata is a byproduct of fertility and hence can honestly signal fertility. This provides important new evidence for the honest signalling hypothesis.
Resumo:
Ropalidia marginata, a primitively eusocial wasp, is different from typical primitively eusocial species in having docile queens who cannot be using dominance to maintain reproductive monopoly and instead appear to use a pheromone from the Dufour's gland to do so. When a docile queen is removed from her colony, one of the workers (potential queen, PQ) becomes highly aggressive, and if the queen is not returned, gradually loses her aggression and becomes the new docile queen within a few days. We hypothesized that the decrease in aggression of the PQ with time since queen removal should be correlated with her change in ovaries and pheromone profile. Because the Dufour's gland hydrocarbon composition in R.marginata can be correlated with fertility, this also gave us an opportunity to test whether PQ is different from workers in her Dufour's gland hydrocarbons. In this study, we therefore trace the road to royalty in R.marginata, that is, the transition of the PQ during queen establishment, in terms of her ovaries, aggression, and Dufour's gland hydrocarbons. Our study focuses on queen establishment, which is important for understanding how reproductive conflict can be manifested and resolved.
Resumo:
Thyroxine is a naturally occurring human hormone produced by the thyroid gland. Clinical applications of thyroxine to treat several chronic disorders are limited by poor water solubility and instability under physiological conditions. An inclusion complex of levo-thyroxine (l-thyroxine), the active form of the hormone with gamma cyclodextrin (gamma-CD) has been obtained and studied with the aim of improving oral delivery rather than the injection formulation of the sodium salt. In addition to greater patient acceptability, inclusion complexes often improve aqueous solubility and bioavailability, stability, and reduce toxicity of drugs, thus providing enhanced pharmaceutical formulations. Physicochemical characterization of the inclusion complex was carried out using Fourier transform infrared spectroscopy, X-ray diffractometry, differential scanning calorimetry, scanning electron microscopy and proton nuclear magnetic resonance spectroscopy. Intermolecular dipolar interactions for the inclusion complex were also studied using 2 dimensional ROESY experiments. Formation of the inclusion complex between the protons H3 and H5 of cyclodextrin with aromatic protons of thyroxine was confirmed by their dipolar interaction. Molecular modelling was used to understand the basis for the complex formation and predict the formation of other complexes. Interestingly, we found that l-thyroxine forms an inclusion complex only with the larger gamma-CD and not with other available alpha and beta forms.
Resumo:
A new species of montane toad Duttaphrynus is described from Nagaland state of Northeast India. The new species is diagnosable based on following combination of characters: absence of preorbital, postorbital and orbitotympanic ridges, elongated and broad parotid gland, first finger longer than second and presence of a mid-dorsal line. The tympanum is hidden under a skin fold (in male) or absent (in female). The species is compared with its congers from India and Indo-China. We propose to consider Duttaphrynus wokhaensis as junior synonym of Duttaphrynus melanostictus.
Resumo:
Thyroid hormones are essential for the development and differentiation of all cells of the human body. They regulate protein, fat, and carbohydrate metabolism. In this Account, we discuss the synthesis, structure, and mechanism of action of thyroid hormones and their analogues. The prohormone thyroxine (14) is synthesized on thyroglobulin by thyroid peroxidase (TPO), a heme enzyme that uses iodide and hydrogen peroxide to perform iodination and phenolic coupling reactions. The monodeiodination of T4 to 3,3',5-triiodothyronine (13) by selenium-containing deiodinases (ID-1, ID-2) is a key step in the activation of thyroid hormones. The type 3 deiodinase (ID-3) catalyzes the deactivation of thyroid hormone in a process that removes iodine selectively from the tyrosyl ring of T4 to produce 3,3',5'-triiodothyronine (rT3). Several physiological and pathological stimuli influence thyroid hormone synthesis. The overproduction of thyroid hormones leads to hyperthyroidism, which is treated by antithyroid drugs that either inhibit the thyroid hormone biosynthesis and/or decrease the conversion of T4 to T3. Antithyroid drugs are thiourea-based compounds, which indude propylthiouracil (PTU), methimazole (MM I), and carbimazole (CBZ). The thyroid gland actively concentrates these heterocyclic compounds against a concentration gradient Recently, the selenium analogues of PTU, MMI, and CBZ attracted significant attention because the selenium moiety in these compounds has a higher nucleophilicity than that of the sulfur moiety. Researchers have developed new methods for the synthesis of the selenium compounds. Several experimental and theoretical investigations revealed that the selone (C=Se) in the selenium analogues is more polarized than the thione (C=S) in the sulfur compounds, and the selones exist predominantly in their zwitterionic forms. Although the thionamide-based antithyroid drugs have been used for almost 70 years, the mechanism of their action is not completely understood. Most investigations have revealed that MMI and PTU irreversibly inhibit TPO. PTU, MTU, and their selenium analogues also inhibit ID-1, most likely by reacting with the selenenyl iodide intermediate. The good ID-1 inhibitory activity of Pill and its analogues can be ascribed to the presence of the -N(H)-C(=O)- functionality that can form hydrogen bonds with nearby amino add residues in the selenenyl sulfide state. In addition to the TPO and ID-1 inhibition, the selenium analogues are very good antioxidants. In the presence of cellular reducing agents such as GSH, these compounds catalytically reduce hydrogen peroxide. They can also efficiently scavenge peroxynitrite, a potent biological oxidant and nitrating agent.