997 resultados para Y1.95-xGdxSiO5:


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recurso electrónico. Valencia: BVNP, 2014

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides. Class I RNRs are composed of two types of subunits: RNR1 contains the active site for reduction and the binding sites for the nucleotide allosteric effectors. RNR2 contains the diiron-tyrosyl radical (Y⋅) cofactor essential for the reduction process. Studies in yeast have recently identified four RNR subunits: Y1 and Y3, Y2 and Y4. These proteins have been expressed in Saccharomyces cerevisiae and in Escherichia coli and purified to ≈90% homogeneity. The specific activity of Y1 isolated from yeast and E. coli is 0.03 μmol⋅min−1⋅mg−1 and of (His)6-Y2 [(His)6-Y2-K387N] from yeast is 0.037 μmol⋅min−1⋅mg−1 (0.125 μmol⋅min−1⋅mg−1). Y2, Y3, and Y4 isolated from E. coli have no measurable activity. Efforts to generate Y⋅ in Y2 or Y4 using Fe2+, O2, and reductant have been unsuccessful. However, preliminary studies show that incubation of Y4 and Fe2+ with inactive E. coli Y2 followed by addition of O2 generates Y2 with a specific activity of 0.069 μmol⋅min−1⋅mg−1 and a Y⋅. A similar experiment with (His)6-Y2-K387N, Y4, O2, and Fe2+ results in an increase in its specific activity to 0.30 μmol⋅min−1⋅mg−1. Studies with antibodies to Y4 and Y2 reveal that they can form a complex in vivo. Y4 appears to play an important role in diiron-Y⋅ assembly of Y2.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The localization of neuropeptide Y (NPY) Y1 receptor (R) -like immunoreactivity (LI) has been studied in cerebral arteries and arterioles of the rat by immunohistochemistry using fluorescence, confocal, and electron microscopy. High levels of Y1-R-LI were observed in smooth muscle cells (SMCs) in the small arterioles of the pial arterial network, especially on the basal surface of the brain, and low levels in the major basal cerebral arteries. The levels of Y1-R-LI varied strongly between adjacent SMCs. Y1-R-LI was associated with small endocytosis vesicles, mainly on the outer surface of the SMCs, but also on their endothelial side and often laterally at the interface between two SMCs. NPY-immunoreactive (Ir) nerve fibers could not be detected in association with the Y1-R-rich small arterioles but only around arteries with low Y1-R levels. A dense network of central NPY-Ir nerve fibers in the superficial layers of the brain was lying close to the strongly Y1-R-Ir small arterioles. The results indicate that NPY has a profound effect on small arterioles of the brain acting on Y1-Rs, both on the peripheral and luminal side of the SMCs. However, the source of the endogenous ligand, NPY, remains unclear. NPY released from central neurons may play a role, in addition to blood-borne NPY.