958 resultados para Western pacific
Resumo:
We describe one new species of Telotrema Ozaki, 1933 from the intestine of an acanthurid fish of the Great Barrier Reef. Telotrema brevicaudatum n. sp. is described from 2 mature specimens from the yellowfin surgeonfish, Acanthurus xanthopterus Valenciennes, 1835 ( Acanthuridae), from waters off Lizard Island, Queensland, Australia. This species is distinguished from the type-species, Telotrema caudatum Ozaki, 1933, by the smaller excretory papilla, the massive pars prostatica, the unipartite, globular seminal vesicle, and the intertesticular position of the ovary. The proposal of a new species of Telotrema necessitates re-examination of the generic diagnosis, and the genus is here redefined in light of the morphology of T. brevicaudatum. Telotrema is distinguished from Gyliauchen Nicoll, 1915 by the possession of a ventral sucker which is larger than the pharynx, a straight or sigmoid oesophagus, an extensive and dense vitellarium, and a distinct excretory papilla. We here recognise 3 species and distinguish them in a key. The biogeographical range for species of Telotrema now includes acanthurid and pomacentrid fishes of the western Pacific Ocean.
Resumo:
Understanding genetic variability and gene flow between populations of scleractinian corals separated by one to several hundred kilometers is crucially important as we head into a century of climate change in which an understanding of the connectivity of populations is a critically important question in management. Genetic methods that directly use molecular variance in the DNA should offer greater precision in detecting differences among individuals and populations than the more traditional allozyme electrophoresis. However, this paper highlights the point that the limited number of DNA markers that have been identified for scleractinian coral genetic studies do not necessarily offer greater precision than that offered by allozymes. In fact, at present allozyme electrophoresis yields greater information than the eight different DNA markers used in this study. Given the relative ease of use of allozymes and the wealth of comparable data sets from numerous previously published studies, allozyme electrophoresis should not be dismissed for population structure and connectivity studies on coral reefs. While continued effort should be placed into searching for new DNA markers, until a more sensitive DNA marker becomes available for scleractinian corals, allozyme electrophoresis remains a powerful and relevant technique for understanding the connectivity of coral population studies.
Resumo:
This Article Right arrow Full Text Right arrow Full Text (PDF) Right arrow Supplemental material Right arrow Alert me when this article is cited Right arrow Alert me if a correction is posted Services Right arrow Similar articles in this journal Right arrow Similar articles in PubMed Right arrow Alert me to new issues of the journal Right arrow Download to citation manager Right arrow Reprints and Permissions Right arrow Copyright Information Right arrow Books from ASM Press Right arrow MicrobeWorld Citing Articles Right arrow Citing Articles via HighWire Right arrow Citing Articles via Google Scholar Google Scholar Right arrow Articles by Lee, N. Right arrow Articles by McCarthy, J. Right arrow Search for Related Content PubMed Right arrow PubMed Citation Right arrow Articles by Lee, N. Right arrow Articles by McCarthy, J. Right arrow Pubmed/NCBI databases * Substance via MeSH Previous Article | Next Article Journal of Clinical Microbiology, August 2006, p. 2773-2778, Vol. 44, No. 8 0095-1137/06/$08.00+0 doi:10.1128/JCM.02557-05 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Effect of Sequence Variation in Plasmodium falciparum Histidine- Rich Protein 2 on Binding of Specific Monoclonal Antibodies: Implications for Rapid Diagnostic Tests for Malaria{dagger} Nelson Lee,1,2 Joanne Baker,2 Kathy T. Andrews,1 Michelle L. Gatton,1,3 David Bell,4 Qin Cheng,2,3 and James McCarthy1* Australian Centre for International and Tropical Health and Nutrition, Queensland Institute of Medical Research and School of Population Health, University of Queensland, Queensland, Australia,1 Department of Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia,2 Malaria Drug Resistance and Chemotherapy, Queensland Institute of Medical Research, Queensland, Australia,3 World Health Organization, Regional Office for the Western Pacific, Manila, Philippines4 Received 8 December 2005/ Returned for modification 23 February 2006/ Accepted 26 May 2006 The ability to accurately diagnose malaria infections, particularly in settings where laboratory facilities are not well developed, is of key importance in the control of this disease. Rapid diagnostic tests (RDTs) offer great potential to address this need. Reports of significant variation in the field performance of RDTs based on the detection of Plasmodium falciparum histidine-rich protein 2 (HRP2) (PfHRP2) and of significant sequence polymorphism in PfHRP2 led us to evaluate the binding of four HRP2-specific monoclonal antibodies (MABs) to parasite proteins from geographically distinct P. falciparum isolates, define the epitopes recognized by these MABs, and relate the copy number of the epitopes to MAB reactivity. We observed a significant difference in the reactivity of the same MAB to different isolates and between different MABs tested with single isolates. When the target epitopes of three of the MABs were determined and mapped onto the peptide sequences of the field isolates, significant variability in the frequency of these epitopes was observed. These findings support the role of sequence variation as an explanation for variations in the performance of HRP2-based RDTs and point toward possible approaches to improve their diagnostic sensitivities
Resumo:
The Quadrifoliovariinae is revised and three new species of Quadrifoliovarium Yamaguit, 1965 from acanthurid fishes of the genus Naso from waters of the Indo-Pacific are described: Q, maceria n. sp. from N. tonganus, N. annulatus, N. fageni and N. brevirostris; Q. simplex n. sp. from N. tonganus and N. quannulatus; and Q. quattuordecim n. sp. from N. tonganus. Amendments are made to the characterisation of the Quadrifoliovariinae, Quadrifoliovarium, Bilacinia Manter, 1969 and Unilacinia Manter, 1969 in light of observations on type and new material. A molecular phylogeny based on ITS2 and 28S regions of the ribosomal DNA is proposed. The phylogeny suggests that U. asymmetrica is the most basal taxon and Q. simplex n. sp. and Q. quattuordecim n. sp. the most derived. Evolution of morphological traits within the Quadrifoliovariinae are discussed in light of the molecular phylogeny. Molecular sequences of the ITS2 rDNA were identical between specimens of Q. pritchardae collected off Exmouth (Indian Ocean), Heron Island and Lizard Island (Western Pacific) and Moorea (far Eastern Indo-Pacific), indicating a broad Indo-Pacific distribution. All members of the subfamily are recorded only from the acanthurid genus Naso, with the exception of B. lobatum (Yamaguti, 1970), which has been recorded from a pomacanthid. The restricted host range of the group is discussed in the light of the phylogeny of the host genus Naso.
Resumo:
Coral reefs, excellent climatic and environmental archives in tropical oceans, are widely distributed in the South China Sea (SCS), which is the largest enclosed marginal sea of western Pacific, covering over 20° in latitude and different climate conditions. Our recent research in the SCS focuses on coral-based high-resolution climate reconstruction and coral reef ecological responses using geochemical and U-series geochronological tools, which provide an ideal opportunity for understanding of Holocene climate processes and events. Some major research highlights are summarized below:
Resumo:
This dataset contains the collection of available published paired Uk'37 and Tex86 records spanning multi-millennial to multi-million year time scales, as well as a collection of Mg/Ca-derived temperatures measured in parallel on surface and subsurface dwelling foraminifera, both used in the analyses of Ho and Laepple, Nature Geoscience 2016. As the signal-to-noise ratios of proxy-derived Holocene temperatures are relatively low, we selected records that contain at least the last deglaciation (oldest sample >18kyr BP).
Resumo:
We present an improved database of planktonic foraminiferal census counts from the Southern Hemisphere Oceans (SHO) from 15°S to 64°S. The SHO database combines 3 existing databases. Using this SHO database, we investigated dissolution biases that might affect faunal census counts. We suggest a depth/[DCO3]2- threshold of ~3800 m/[DCO3]2- = ~-10 to -5 µmol/kg for the Pacific and Indian Oceans, and ~4000 m/[DCO3]2- = ~0 to 10 µmol/kg for the Atlantic Ocean, under which core-top assemblages can be affected by dissolution and are less reliable for paleo-sea surface temperature (SST) reconstructions. We removed all core-tops beyond these thresholds from the SHO database. This database has 598 core-tops and is able to reconstruct past SST variations from 2° to 25.5°C, with a root mean square error of 1.00°C, for annual temperatures. To inspect dissolution affects SST reconstruction quality, we tested the data base with two "leave-one-out" tests, with and without the deep core-tops. We used this database to reconstruct Summer SST (SSST) over the last 20 ka, using the Modern Analog Technique method, on the Southeast Pacific core MD07-3100. This was compared to the SSST reconstructed using the 3 databases used to compile the SHO database. Thus showing that the reconstruction using the SHO database is more reliable, as its dissimilarity values are the lowest. The most important aspect here is the importance of a bias-free, geographic-rich, database. We leave this dataset open-ended to future additions; the new core-tops must be carefully selected, with their chronological frameworks, and evidence of dissolution assessed.
Resumo:
The cores described are taken during the R/V Thomas Washington ROUNDABOUT Cruise from May 1988 until March 1989 by the Scripps Institute of Oceanography. A total of 159 cores and dredges were recovered and are available at Scripps Institute of Oceanography for sampling and study.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
We analyzed the high-resolution foraminifer isotope records, total organic carbon (TOC), and opal content from an Okinawa Trough core MD012404 in order to estimate the monsoon hydrography and productivity changes in the East China Sea (ECS) of the tropical western Pacific over the past 100,000 years. The variability shown in the records on orbital time scales indicates that high TOC intervals coincide with the increases of boreal May-September insolation driven by precession cycles (~21 ka), implying a strong connection to the variations in monsoons. We also observed possibly nearly synchronous, millennial-scale changes of the ECS surface hydrography (mainly driven by salinity changes but also by temperature effects) and productivity coincident with monsoon events in the Hulu/Dongge stalagmite isotope records. We found that increased freshening and high productivity correlate with high monsoon intensity in interstadials. This study suggests that the millennial-scale changes in monsoon hydrography and productivity in the ECS are remarkable and persistent features over the past 100,000 years.
Resumo:
Deep-sea sediment cores from Scripps Institution of Oceanography's ANTIPODE Expedition were described to identify visually distinct units based on color, texture, or other feature, sedimentary structures, lithology and abundance of component grains, and paleontology. Sixty-eight cores were examined, of which 34 are large diameter piston cores. Photographs and graphic lithology legs are included as PLATES 1-48. ANTIPODE Expedition recovered cores from: the Monterey-Ascension Fan, the Northeast Pacific, the Aleutians, the Northwest Pacific, the Philippine Sea, Indonesia, the Tonga Ridge, the Seychelles, Chagos Archipelago, the Mid-Indian Ridge, the Bay of Bengal, near Sumatra, and near the Cocos Island in the Indian Ocean. The purpose of this report is to present sufficient basic data on ANTIPODE cores for invesiigators to choose samples for their own research.
Resumo:
Insight into past changes of upper ocean stratification, circulation, and nutrient signatures rely on our knowledge of the apparent calcification depth (ACD) and ecology of planktonic foraminifera, which serve as archives for paleoceanographic relevant geochemical signals. The ACD of different species varies strongly between ocean basins, but also regionally. We constrained foraminiferal ACDs in the western Pacific warm pool (Manihiki Plateau) by comparing stable oxygen and carbon isotopes (d18Ocalcite, d13Ccalcite) as well as Mg/Ca ratios from living planktonic foraminifera to in-situ physical and chemical water mass properties (temperature, salinity, d18Oseawater, d13CDIC). Our analyses point to Globigerinoides ruber as the shallowest dweller, followed by Globigerinoides sacculifer, Neogloboquadrina dutertrei, Pulleniatina obliquiloculata and Globotaloides hexagonus inhabiting increasingly greater depths. These findings are consistent with other ocean basins; however, absolute ACDs differ from other studies. The uppermost mixed-layer species G. ruber and G. sacculifer denote mean calcification depths of ~95 m and ~120 m, respectively. These Western Pacific ACDs are much deeper than in most other studies and most likely relate to the thick surface mixed layer and the deep chlorophyll maximum in this region. Our results indicate that N. dutertrei appears to be influenced by mixing waters from the Pacific equatorial divergence, while P. obliquiloculata with an ACD of ~160 m is more suitable for thermocline reconstructions. ACDs of G. hexagonus reveal a deep calcification depth of ~450 m in oxygen-depleted, but nutrient-rich water masses, consistent to other studies. As the d13C of G. hexagonus is in near-equilibrium with ambient seawater, we suggest this species is suitable for tracing nutrient conditions in equatorial water masses originating in extra-topical regions.